Spaces:
Runtime error
Runtime error
Delete app1.py
Browse files
app1.py
DELETED
|
@@ -1,71 +0,0 @@
|
|
| 1 |
-
import asyncio
|
| 2 |
-
from llama_index.core import Document
|
| 3 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 4 |
-
from llama_index.core.node_parser import SentenceSplitter
|
| 5 |
-
from llama_index.core.ingestion import IngestionPipeline
|
| 6 |
-
from llama_index.core import SimpleDirectoryReader
|
| 7 |
-
|
| 8 |
-
reader = SimpleDirectoryReader(input_dir=r"C:\Users\so7\AppData\Local\Programs\Python\Python313\RAG")
|
| 9 |
-
documents = reader.load_data()
|
| 10 |
-
|
| 11 |
-
# create the pipeline with transformations
|
| 12 |
-
pipeline = IngestionPipeline(
|
| 13 |
-
transformations=[
|
| 14 |
-
SentenceSplitter(chunk_overlap=0),
|
| 15 |
-
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
|
| 16 |
-
]
|
| 17 |
-
)
|
| 18 |
-
|
| 19 |
-
# Define an async function to handle the pipeline
|
| 20 |
-
async def main():
|
| 21 |
-
# Create the pipeline with transformations
|
| 22 |
-
pipeline = IngestionPipeline(
|
| 23 |
-
transformations=[
|
| 24 |
-
SentenceSplitter(chunk_overlap=0),
|
| 25 |
-
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
|
| 26 |
-
]
|
| 27 |
-
)
|
| 28 |
-
# Use await inside the async function
|
| 29 |
-
nodes =
|
| 30 |
-
await pipeline.arun(documents=[Document.example()])
|
| 31 |
-
# Optional: Do something with the nodes (e.g., print them)
|
| 32 |
-
print(nodes)
|
| 33 |
-
|
| 34 |
-
# Run the async function using asyncio
|
| 35 |
-
if __name__ == "__main__":
|
| 36 |
-
asyncio.run(main())
|
| 37 |
-
|
| 38 |
-
import chromadb
|
| 39 |
-
from llama_index.vector_stores.chroma import ChromaVectorStore
|
| 40 |
-
from llama_index.core.ingestion import IngestionPipeline
|
| 41 |
-
from llama_index.core.node_parser import SentenceSplitter
|
| 42 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 43 |
-
|
| 44 |
-
db = chromadb.PersistentClient(path="./pl_db")
|
| 45 |
-
chroma_collection = db.get_or_create_collection("ppgpl")
|
| 46 |
-
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
|
| 47 |
-
|
| 48 |
-
pipeline = IngestionPipeline(
|
| 49 |
-
transformations=[
|
| 50 |
-
SentenceSplitter(chunk_size=25, chunk_overlap=0),
|
| 51 |
-
HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
|
| 52 |
-
],
|
| 53 |
-
vector_store=vector_store,
|
| 54 |
-
)
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
from llama_index.core import VectorStoreIndex
|
| 58 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 59 |
-
|
| 60 |
-
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
| 61 |
-
index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)
|
| 62 |
-
|
| 63 |
-
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
| 64 |
-
|
| 65 |
-
llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct")
|
| 66 |
-
query_engine = index.as_query_engine(
|
| 67 |
-
llm=llm,
|
| 68 |
-
response_mode="tree_summarize",
|
| 69 |
-
)
|
| 70 |
-
query_engine.query("Солнце на третей ступени")
|
| 71 |
-
# The meaning of life is 42
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|