SergeyO7 commited on
Commit
803fc12
·
verified ·
1 Parent(s): 99a8b0b

Delete app1.py

Browse files
Files changed (1) hide show
  1. app1.py +0 -71
app1.py DELETED
@@ -1,71 +0,0 @@
1
- import asyncio
2
- from llama_index.core import Document
3
- from llama_index.embeddings.huggingface import HuggingFaceEmbedding
4
- from llama_index.core.node_parser import SentenceSplitter
5
- from llama_index.core.ingestion import IngestionPipeline
6
- from llama_index.core import SimpleDirectoryReader
7
-
8
- reader = SimpleDirectoryReader(input_dir=r"C:\Users\so7\AppData\Local\Programs\Python\Python313\RAG")
9
- documents = reader.load_data()
10
-
11
- # create the pipeline with transformations
12
- pipeline = IngestionPipeline(
13
- transformations=[
14
- SentenceSplitter(chunk_overlap=0),
15
- HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
16
- ]
17
- )
18
-
19
- # Define an async function to handle the pipeline
20
- async def main():
21
- # Create the pipeline with transformations
22
- pipeline = IngestionPipeline(
23
- transformations=[
24
- SentenceSplitter(chunk_overlap=0),
25
- HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
26
- ]
27
- )
28
- # Use await inside the async function
29
- nodes =
30
- await pipeline.arun(documents=[Document.example()])
31
- # Optional: Do something with the nodes (e.g., print them)
32
- print(nodes)
33
-
34
- # Run the async function using asyncio
35
- if __name__ == "__main__":
36
- asyncio.run(main())
37
-
38
- import chromadb
39
- from llama_index.vector_stores.chroma import ChromaVectorStore
40
- from llama_index.core.ingestion import IngestionPipeline
41
- from llama_index.core.node_parser import SentenceSplitter
42
- from llama_index.embeddings.huggingface import HuggingFaceEmbedding
43
-
44
- db = chromadb.PersistentClient(path="./pl_db")
45
- chroma_collection = db.get_or_create_collection("ppgpl")
46
- vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
47
-
48
- pipeline = IngestionPipeline(
49
- transformations=[
50
- SentenceSplitter(chunk_size=25, chunk_overlap=0),
51
- HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5"),
52
- ],
53
- vector_store=vector_store,
54
- )
55
-
56
-
57
- from llama_index.core import VectorStoreIndex
58
- from llama_index.embeddings.huggingface import HuggingFaceEmbedding
59
-
60
- embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
61
- index = VectorStoreIndex.from_vector_store(vector_store, embed_model=embed_model)
62
-
63
- from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
64
-
65
- llm = HuggingFaceInferenceAPI(model_name="Qwen/Qwen2.5-Coder-32B-Instruct")
66
- query_engine = index.as_query_engine(
67
- llm=llm,
68
- response_mode="tree_summarize",
69
- )
70
- query_engine.query("Солнце на третей ступени")
71
- # The meaning of life is 42