Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -81,20 +81,39 @@ def process_query(query_text: str, vectorstore):
|
|
| 81 |
for doc, score in results
|
| 82 |
])
|
| 83 |
|
|
|
|
|
|
|
|
|
|
| 84 |
# Формируем строковый промпт для модели
|
| 85 |
-
prompt = f"Answer the question based on the following context:\n{context_text}\n\nQuestion: {query_text}"
|
| 86 |
|
| 87 |
# Используем модель t5-base для text2text-generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
model = HuggingFaceEndpoint(
|
| 89 |
-
repo_id="t5-
|
| 90 |
task="text2text-generation",
|
| 91 |
-
temperature=0.5,
|
| 92 |
-
max_length=512,
|
| 93 |
-
# huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN") # Раскомментируйте, если нужен токен
|
| 94 |
)
|
| 95 |
|
| 96 |
# Передаем строковый промпт
|
| 97 |
-
response_text = model.invoke(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
sources = list(set([doc.metadata.get("source", "") for doc, _ in results]))
|
| 100 |
return response_text, sources
|
|
|
|
| 81 |
for doc, score in results
|
| 82 |
])
|
| 83 |
|
| 84 |
+
# Формируем промпт в формате, который понимает T5
|
| 85 |
+
prompt = f"question: {query_text} context: {context_text}"
|
| 86 |
+
|
| 87 |
# Формируем строковый промпт для модели
|
| 88 |
+
#prompt = f"Answer the question based on the following context:\n{context_text}\n\nQuestion: {query_text}"
|
| 89 |
|
| 90 |
# Используем модель t5-base для text2text-generation
|
| 91 |
+
#model = HuggingFaceEndpoint(
|
| 92 |
+
# repo_id="t5-base",
|
| 93 |
+
# task="text2text-generation",
|
| 94 |
+
# temperature=0.5,
|
| 95 |
+
# max_length=512,
|
| 96 |
+
# # huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN") # Раскомментируйте, если нужен токен
|
| 97 |
+
#)
|
| 98 |
+
|
| 99 |
+
# Инициализация модели с базовыми параметрами
|
| 100 |
model = HuggingFaceEndpoint(
|
| 101 |
+
repo_id="google/flan-t5-small", # Используем Flan-T5 вместо t5-base
|
| 102 |
task="text2text-generation",
|
|
|
|
|
|
|
|
|
|
| 103 |
)
|
| 104 |
|
| 105 |
# Передаем строковый промпт
|
| 106 |
+
#response_text = model.invoke(prompt)
|
| 107 |
+
|
| 108 |
+
# Вызов модели с параметрами генерации
|
| 109 |
+
response_text = model.invoke(
|
| 110 |
+
prompt,
|
| 111 |
+
generation_kwargs={
|
| 112 |
+
"max_length": 512,
|
| 113 |
+
"temperature": 0.5,
|
| 114 |
+
"repetition_penalty": 1.2
|
| 115 |
+
}
|
| 116 |
+
)
|
| 117 |
|
| 118 |
sources = list(set([doc.metadata.get("source", "") for doc, _ in results]))
|
| 119 |
return response_text, sources
|