File size: 9,753 Bytes
779bb9b
4335246
8ee580a
 
 
 
64b21b3
8ee580a
42f3f9c
 
8ee580a
 
 
 
 
c627e4b
 
8ee580a
 
 
 
 
 
5526d83
 
8ee580a
 
 
 
 
5526d83
c627e4b
5526d83
 
 
8ee580a
 
 
 
 
 
 
 
 
5526d83
8ee580a
 
 
 
 
 
 
 
c627e4b
8ee580a
 
 
 
 
 
 
 
f62d086
8ee580a
5526d83
 
 
 
8ee580a
 
 
 
42f3f9c
 
 
 
 
 
8ee580a
42f3f9c
 
8ee580a
42f3f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee580a
 
c627e4b
8ee580a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f776692
6ccbf34
c73dde2
5526d83
8ee580a
 
 
 
 
 
 
 
 
5526d83
 
8ee580a
d4cf179
5526d83
f776692
8ee580a
 
c73dde2
8ee580a
c73dde2
34f26fc
 
c627e4b
34f26fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ee580a
5526d83
c627e4b
5526d83
8ee580a
34f26fc
8ee580a
 
 
 
34f26fc
 
8ee580a
 
 
 
 
 
 
 
 
 
 
5526d83
c627e4b
 
 
 
 
 
5526d83
c627e4b
5526d83
42f3f9c
 
 
 
 
 
 
8ee580a
42f3f9c
 
 
 
34f26fc
8ee580a
 
c627e4b
8ee580a
 
c627e4b
 
8ee580a
 
 
 
c627e4b
34f26fc
f776692
c627e4b
34f26fc
 
8ee580a
 
c627e4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4335246
c627e4b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import pandas as pd
import numpy as np
import streamlit as st
from dotenv import load_dotenv
from huggingface_hub import InferenceClient, login
import google.generativeai as genai
from io import StringIO
import time
import requests

# ======================================================
# βš™οΈ APP CONFIGURATION
# ======================================================
st.set_page_config(page_title="πŸ“Š Smart Data Analyst Pro", layout="wide")
st.title("πŸ“Š Smart Data Analyst Pro (Chat Mode)")
st.caption("Chat with your dataset β€” AI cleans, analyzes, and visualizes data. Hugging Face + Gemini compatible.")

# ======================================================
# πŸ” Load Environment Variables
# ======================================================
load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_API_KEY")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")

if not HF_TOKEN:
    st.error("❌ Missing HF_TOKEN. Please set it in your .env file.")
else:
    login(token=HF_TOKEN)

if GEMINI_API_KEY:
    genai.configure(api_key=GEMINI_API_KEY)
else:
    st.warning("⚠️ Gemini API key missing. Gemini 2.5 Flash will not work.")

# ======================================================
# 🧠 MODEL SETUP
# ======================================================
with st.sidebar:
    st.header("βš™οΈ Model Settings")

    CLEANER_MODEL = st.selectbox(
        "Select Cleaner Model:",
        [
            "Qwen/Qwen2.5-Coder-14B",
            "mistralai/Mistral-7B-Instruct-v0.3"
        ],
        index=0
    )

    ANALYST_MODEL = st.selectbox(
        "Select Analysis Model:",
        [
            "Gemini 2.5 Flash (Google)",
            "Qwen/Qwen2.5-14B-Instruct",
            "mistralai/Mistral-7B-Instruct-v0.3",
            "HuggingFaceH4/zephyr-7b-beta"
        ],
        index=0
    )

    temperature = st.slider("Temperature", 0.0, 1.0, 0.3)
    max_tokens = st.slider("Max Tokens", 128, 4096, 1024)

hf_cleaner_client = InferenceClient(model=CLEANER_MODEL, token=HF_TOKEN)
hf_analyst_client = None
if ANALYST_MODEL != "Gemini 2.5 Flash (Google)":
    hf_analyst_client = InferenceClient(model=ANALYST_MODEL, token=HF_TOKEN)

# ======================================================
# 🧩 SAFE GENERATION FUNCTION
# ======================================================
def safe_hf_generate(client, prompt, temperature=0.3, max_tokens=512, retries=2):
    """Try text generation, with retry + fallback on service errors."""
    for attempt in range(retries + 1):
        try:
            resp = client.text_generation(
                prompt,
                temperature=temperature,
                max_new_tokens=max_tokens,
                return_full_text=False,
            )
            return resp.strip()
        except Exception as e:
            err = str(e)
            # 🩹 FIX: Handle common server overloads gracefully
            if "503" in err or "Service Temporarily Unavailable" in err:
                time.sleep(2)
                if attempt < retries:
                    continue  # retry
                else:
                    return "⚠️ The Hugging Face model is temporarily unavailable. Please try again or switch to Gemini."
            elif "Supported task: conversational" in err:
                chat_resp = client.chat_completion(
                    messages=[{"role": "user", "content": prompt}],
                    max_tokens=max_tokens,
                    temperature=temperature,
                )
                return chat_resp["choices"][0]["message"]["content"].strip()
            else:
                raise e
    return "⚠️ Failed after retries."

# ======================================================
# 🧩 DATA CLEANING
# ======================================================
def fallback_clean(df: pd.DataFrame) -> pd.DataFrame:
    df = df.copy()
    df.dropna(axis=1, how="all", inplace=True)
    df.columns = [c.strip().replace(" ", "_").lower() for c in df.columns]
    for col in df.columns:
        if df[col].dtype == "O":
            if not df[col].mode().empty:
                df[col].fillna(df[col].mode()[0], inplace=True)
            else:
                df[col].fillna("Unknown", inplace=True)
        else:
            df[col].fillna(df[col].median(), inplace=True)
    df.drop_duplicates(inplace=True)
    return df

def ai_clean_dataset(df: pd.DataFrame) -> (pd.DataFrame, str):
    if len(df) > 50:
        return df, "⚠️ AI cleaning skipped: dataset has more than 50 rows."
    csv_text = df.to_csv(index=False)
    prompt = f"""
You are a professional data cleaning assistant.
Clean and standardize the dataset below dynamically:
1. Handle missing values
2. Fix column name inconsistencies
3. Convert data types (dates, numbers, categories)
4. Remove irrelevant or duplicate rows
Return ONLY a valid CSV text (no markdown, no explanations).

Dataset:
{csv_text}
"""
    try:
        cleaned_str = safe_hf_generate(hf_cleaner_client, prompt, temperature=0.1, max_tokens=4096)
        cleaned_str = cleaned_str.replace("```csv", "").replace("```", "").replace("###", "").strip()
        cleaned_df = pd.read_csv(StringIO(cleaned_str), on_bad_lines="skip")
        cleaned_df.columns = [c.strip().replace(" ", "_").lower() for c in cleaned_df.columns]
        return cleaned_df, "βœ… AI cleaning completed successfully."
    except Exception as e:
        return df, f"⚠️ AI cleaning failed: {str(e)}"

# ======================================================
# 🧩 DATA SUMMARY (Token-efficient)
# ======================================================
def summarize_for_analysis(df: pd.DataFrame, sample_rows=10) -> str:
    summary = [f"Rows: {len(df)}, Columns: {len(df.columns)}"]
    for col in df.columns:
        non_null = int(df[col].notnull().sum())
        if pd.api.types.is_numeric_dtype(df[col]):
            desc = df[col].describe().to_dict()
            summary.append(f"- {col}: mean={desc.get('mean', np.nan):.2f}, median={df[col].median():.2f}, non_null={non_null}")
        else:
            top = df[col].value_counts().head(3).to_dict()
            summary.append(f"- {col}: top_values={top}, non_null={non_null}")
    sample = df.head(sample_rows).to_csv(index=False)
    summary.append("--- Sample Data ---")
    summary.append(sample)
    return "\n".join(summary)

# ======================================================
# 🧠 ANALYSIS FUNCTION
# ======================================================
def query_analysis_model(df: pd.DataFrame, user_query: str, dataset_name: str) -> str:
    prompt_summary = summarize_for_analysis(df)
    prompt = f"""
You are a professional data analyst.
Analyze the dataset '{dataset_name}' and answer the user's question.

--- DATA SUMMARY ---
{prompt_summary}

--- USER QUESTION ---
{user_query}

Respond with:
1. Key insights and patterns
2. Quantitative findings
3. Notable relationships or anomalies
4. Data-driven recommendations
"""
    try:
        if ANALYST_MODEL == "Gemini 2.5 Flash (Google)":
            response = genai.GenerativeModel("gemini-2.5-flash").generate_content(
                prompt,
                generation_config={
                    "temperature": temperature,
                    "max_output_tokens": max_tokens
                }
            )
            return response.text if hasattr(response, "text") else "No valid text response."
        else:
            # 🩹 FIX: wrap in retry-aware generator
            result = safe_hf_generate(hf_analyst_client, prompt, temperature=temperature, max_tokens=max_tokens)
            # fallback to Gemini if Hugging Face failed entirely
            if "temporarily unavailable" in result.lower() and GEMINI_API_KEY:
                alt = genai.GenerativeModel("gemini-2.5-flash").generate_content(prompt)
                return f"πŸ”„ Fallback to Gemini:\n\n{alt.text}"
            return result
    except Exception as e:
        # 🩹 FIX: fallback if server rejects or 5xx
        if "503" in str(e) and GEMINI_API_KEY:
            response = genai.GenerativeModel("gemini-2.5-flash").generate_content(prompt)
            return f"πŸ”„ Fallback to Gemini due to 503 error:\n\n{response.text}"
        return f"⚠️ Analysis failed: {str(e)}"

# ======================================================
# πŸš€ MAIN CHATBOT LOGIC
# ======================================================
uploaded = st.file_uploader("πŸ“Ž Upload CSV or Excel file", type=["csv", "xlsx"])
if "messages" not in st.session_state:
    st.session_state.messages = []

if uploaded:
    df = pd.read_csv(uploaded) if uploaded.name.endswith(".csv") else pd.read_excel(uploaded)

    with st.spinner("🧼 Cleaning your dataset..."):
        cleaned_df, cleaning_status = ai_clean_dataset(df)

    st.subheader("βœ… Cleaning Status")
    st.info(cleaning_status)
    st.subheader("πŸ“Š Dataset Preview")
    st.dataframe(cleaned_df.head(), use_container_width=True)

    st.subheader("πŸ’¬ Chat with Your Dataset")
    for msg in st.session_state.messages:
        with st.chat_message(msg["role"]):
            st.markdown(msg["content"])

    if user_query := st.chat_input("Ask something about your dataset..."):
        st.session_state.messages.append({"role": "user", "content": user_query})
        with st.chat_message("user"):
            st.markdown(user_query)

        with st.chat_message("assistant"):
            with st.spinner("πŸ€– Analyzing..."):
                result = query_analysis_model(cleaned_df, user_query, uploaded.name)
                st.markdown(result)
                st.session_state.messages.append({"role": "assistant", "content": result})
else:
    st.info("πŸ“₯ Upload a dataset to begin chatting with your AI analyst.")