Spaces:
Runtime error
Runtime error
Suchinthana
commited on
Commit
Β·
45f7be1
1
Parent(s):
6efeffc
Init code add
Browse files- app.py +130 -4
- requirements.txt +10 -0
app.py
CHANGED
|
@@ -1,7 +1,133 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
from openai import OpenAI
|
| 5 |
+
from geopy.geocoders import Nominatim
|
| 6 |
+
from folium import Map, GeoJson
|
| 7 |
+
from gradio_folium import Folium
|
| 8 |
+
import cv2
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch
|
| 11 |
+
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
|
| 12 |
+
from PIL import Image
|
| 13 |
+
import io
|
| 14 |
|
| 15 |
+
# Initialize APIs
|
| 16 |
+
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
|
| 17 |
+
geolocator = Nominatim(user_agent="geoapi")
|
| 18 |
|
| 19 |
+
# Function to fetch coordinates
|
| 20 |
+
def get_geo_coordinates(location_name):
|
| 21 |
+
try:
|
| 22 |
+
location = geolocator.geocode(location_name)
|
| 23 |
+
if location:
|
| 24 |
+
return [location.longitude, location.latitude]
|
| 25 |
+
return None
|
| 26 |
+
except Exception as e:
|
| 27 |
+
print(f"Error fetching coordinates for {location_name}: {e}")
|
| 28 |
+
return None
|
| 29 |
+
|
| 30 |
+
# Function to process OpenAI chat response
|
| 31 |
+
def process_openai_response(query):
|
| 32 |
+
response = openai_client.chat.completions.create(
|
| 33 |
+
model="gpt-4o-mini",
|
| 34 |
+
messages=[
|
| 35 |
+
{"role": "system", "content": "You are a skilled assistant answering geographical and historical questions..."},
|
| 36 |
+
{"role": "user", "content": query}
|
| 37 |
+
],
|
| 38 |
+
temperature=1,
|
| 39 |
+
max_tokens=2048,
|
| 40 |
+
top_p=1,
|
| 41 |
+
frequency_penalty=0,
|
| 42 |
+
presence_penalty=0,
|
| 43 |
+
response_format={"type": "json_object"}
|
| 44 |
+
)
|
| 45 |
+
return json.loads(response.choices[0].message.content)
|
| 46 |
+
|
| 47 |
+
# Generate GeoJSON from OpenAI response
|
| 48 |
+
def generate_geojson(response):
|
| 49 |
+
feature_type = response['output']['feature_representation']['type']
|
| 50 |
+
city_names = response['output']['feature_representation']['cities']
|
| 51 |
+
properties = response['output']['feature_representation']['properties']
|
| 52 |
+
|
| 53 |
+
coordinates = []
|
| 54 |
+
for city in city_names:
|
| 55 |
+
coord = get_geo_coordinates(city)
|
| 56 |
+
if coord:
|
| 57 |
+
coordinates.append(coord)
|
| 58 |
+
|
| 59 |
+
if feature_type == "Polygon":
|
| 60 |
+
coordinates.append(coordinates[0]) # Close the polygon
|
| 61 |
+
|
| 62 |
+
return {
|
| 63 |
+
"type": "FeatureCollection",
|
| 64 |
+
"features": [{
|
| 65 |
+
"type": "Feature",
|
| 66 |
+
"properties": properties,
|
| 67 |
+
"geometry": {
|
| 68 |
+
"type": feature_type,
|
| 69 |
+
"coordinates": [coordinates] if feature_type == "Polygon" else coordinates
|
| 70 |
+
}
|
| 71 |
+
}]
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
# Generate map image
|
| 75 |
+
def save_map_image(geojson_data):
|
| 76 |
+
m = Map()
|
| 77 |
+
geo_layer = GeoJson(geojson_data, name="Feature map")
|
| 78 |
+
geo_layer.add_to(m)
|
| 79 |
+
bounds = get_bounds(geojson_data)
|
| 80 |
+
m.fit_bounds(bounds)
|
| 81 |
+
img_data = m._to_png(5)
|
| 82 |
+
img = Image.open(io.BytesIO(img_data))
|
| 83 |
+
img.save('map_image.png')
|
| 84 |
+
return 'map_image.png'
|
| 85 |
+
|
| 86 |
+
# ControlNet pipeline setup
|
| 87 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
|
| 88 |
+
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
| 89 |
+
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
|
| 90 |
+
)
|
| 91 |
+
pipeline.enable_model_cpu_offload()
|
| 92 |
+
|
| 93 |
+
def generate_satellite_image(init_image_path, mask_image_path, prompt):
|
| 94 |
+
init_image = Image.open(init_image_path)
|
| 95 |
+
mask_image = Image.open(mask_image_path)
|
| 96 |
+
control_image = make_inpaint_condition(init_image, mask_image)
|
| 97 |
+
result = pipeline(prompt=prompt, image=init_image, mask_image=mask_image, control_image=control_image)
|
| 98 |
+
return result.images[0]
|
| 99 |
+
|
| 100 |
+
# Gradio UI
|
| 101 |
+
def handle_query(query):
|
| 102 |
+
# Process OpenAI response
|
| 103 |
+
response = process_openai_response(query)
|
| 104 |
+
geojson_data = generate_geojson(response)
|
| 105 |
+
|
| 106 |
+
# Save map image
|
| 107 |
+
map_image_path = save_map_image(geojson_data)
|
| 108 |
+
|
| 109 |
+
# Generate mask for ControlNet
|
| 110 |
+
empty_map = cv2.imread("empty_map_image.png")
|
| 111 |
+
map_image = cv2.imread(map_image_path)
|
| 112 |
+
difference = cv2.absdiff(cv2.cvtColor(empty_map, cv2.COLOR_BGR2GRAY), cv2.cvtColor(map_image, cv2.COLOR_BGR2GRAY))
|
| 113 |
+
_, mask = cv2.threshold(difference, 15, 255, cv2.THRESH_BINARY)
|
| 114 |
+
cv2.imwrite("mask.png", mask)
|
| 115 |
+
|
| 116 |
+
# Generate satellite image
|
| 117 |
+
satellite_image = generate_satellite_image("map_image.png", "mask.png", response['output']['feature_representation']['properties']['description'])
|
| 118 |
+
|
| 119 |
+
return map_image_path, satellite_image
|
| 120 |
+
|
| 121 |
+
# Gradio interface
|
| 122 |
+
with gr.Blocks() as demo:
|
| 123 |
+
with gr.Row():
|
| 124 |
+
query_input = gr.Textbox(label="Enter Query")
|
| 125 |
+
submit_btn = gr.Button("Submit")
|
| 126 |
+
with gr.Row():
|
| 127 |
+
map_output = gr.Image(label="Map Visualization")
|
| 128 |
+
satellite_output = gr.Image(label="Generated Satellite Image")
|
| 129 |
+
|
| 130 |
+
submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, satellite_output])
|
| 131 |
+
|
| 132 |
+
if __name__ == "__main__":
|
| 133 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
openai # For interacting with OpenAI API
|
| 2 |
+
gradio # For creating the Gradio UI
|
| 3 |
+
gradio-folium # For embedding Folium maps into Gradio
|
| 4 |
+
folium # For creating maps
|
| 5 |
+
geopy # For fetching geolocation data
|
| 6 |
+
torch # For PyTorch (used by Diffusers and ControlNet)
|
| 7 |
+
diffusers # For the Stable Diffusion inpainting pipeline
|
| 8 |
+
opencv-python-headless # For image processing with OpenCV
|
| 9 |
+
Pillow # For working with images
|
| 10 |
+
numpy # For numerical operations
|