Tirath5504 commited on
Commit
00efb7c
Β·
1 Parent(s): 08a5a31

add example

Browse files
Files changed (1) hide show
  1. app.py +195 -19
app.py CHANGED
@@ -26,6 +26,43 @@ queue_manager = QueueManager(max_concurrent=3)
26
  # Progress tracking
27
  progress_store = {}
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  def update_progress(request_id: str, stage: str, progress: float, message: str):
30
  """Update progress for a request"""
31
  progress_store[request_id] = {
@@ -198,12 +235,31 @@ def check_progress_ui(request_id: str) -> str:
198
  return json.dumps(progress_store[request_id], indent=2)
199
  return json.dumps({"error": "Request ID not found"}, indent=2)
200
 
 
 
 
 
 
 
 
 
 
 
 
 
201
  # Build Gradio Interface
202
  with gr.Blocks(title="Automated Consensus Analysis API", theme=gr.themes.Soft()) as demo:
203
  gr.Markdown("""
204
  # πŸ”¬ Automated Consensus Analysis API
205
 
206
  This API provides automated peer review consensus analysis using LLMs and search-augmented verification.
 
 
 
 
 
 
 
207
  """)
208
 
209
  with gr.Tabs():
@@ -212,16 +268,40 @@ with gr.Blocks(title="Automated Consensus Analysis API", theme=gr.themes.Soft())
212
  gr.Markdown("### Run the complete analysis pipeline")
213
  with gr.Row():
214
  with gr.Column():
215
- full_title = gr.Textbox(label="Paper Title", placeholder="Enter paper title...")
216
- full_abstract = gr.Textbox(label="Paper Abstract", lines=5, placeholder="Enter paper abstract...")
 
 
 
 
 
 
 
 
217
  full_reviews = gr.Code(
218
  label="Reviews (JSON Array)",
219
  language="json",
220
- value='["Review 1 text...", "Review 2 text..."]'
 
221
  )
222
- full_submit = gr.Button("πŸš€ Run Full Pipeline", variant="primary")
 
 
 
 
 
 
 
 
 
223
  with gr.Column():
224
- full_output = gr.Code(label="Results", language="json")
 
 
 
 
 
 
225
 
226
  full_submit.click(
227
  fn=run_full_pipeline_ui,
@@ -232,9 +312,25 @@ with gr.Blocks(title="Automated Consensus Analysis API", theme=gr.themes.Soft())
232
  # Individual Stages
233
  with gr.Tab("πŸ” Critique Extraction"):
234
  gr.Markdown("### Extract critique points from reviews")
235
- critique_reviews = gr.Code(label="Reviews (JSON Array)", language="json")
236
- critique_submit = gr.Button("Extract Critiques")
237
- critique_output = gr.Code(label="Extracted Critiques", language="json")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238
 
239
  critique_submit.click(
240
  fn=run_critique_extraction_ui,
@@ -243,10 +339,16 @@ with gr.Blocks(title="Automated Consensus Analysis API", theme=gr.themes.Soft())
243
  )
244
 
245
  with gr.Tab("⚑ Disagreement Detection"):
246
- gr.Markdown("### Detect disagreements")
247
- disagree_critiques = gr.Code(label="Critique Points (JSON)", language="json")
248
- disagree_submit = gr.Button("Detect Disagreements")
249
- disagree_output = gr.Code(label="Disagreement Analysis", language="json")
 
 
 
 
 
 
250
 
251
  disagree_submit.click(
252
  fn=run_disagreement_detection_ui,
@@ -255,15 +357,21 @@ with gr.Blocks(title="Automated Consensus Analysis API", theme=gr.themes.Soft())
255
  )
256
 
257
  with gr.Tab("πŸ”Ž Search & Retrieval"):
258
- gr.Markdown("### Search for evidence")
 
 
259
  with gr.Row():
260
  with gr.Column():
261
- search_title = gr.Textbox(label="Paper Title")
262
- search_abstract = gr.Textbox(label="Paper Abstract", lines=3)
263
- search_critiques = gr.Code(label="Critiques (JSON)", language="json")
264
- search_submit = gr.Button("Search Evidence")
 
 
 
 
265
  with gr.Column():
266
- search_output = gr.Code(label="Search Results", language="json")
267
 
268
  search_submit.click(
269
  fn=run_search_retrieval_ui,
@@ -272,7 +380,75 @@ with gr.Blocks(title="Automated Consensus Analysis API", theme=gr.themes.Soft())
272
  )
273
 
274
  with gr.Tab("πŸ“– API Documentation"):
275
- gr.Markdown("## API Documentation...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
276
 
277
  # Launch the app
278
  if __name__ == "__main__":
 
26
  # Progress tracking
27
  progress_store = {}
28
 
29
+ # Example data for quick testing
30
+ EXAMPLE_PAPER_TITLE = "Learning Disentangled Representations for CounterFactual Regression"
31
+
32
+ EXAMPLE_PAPER_ABSTRACT = """We consider the challenge of estimating treatment effects from observational data; and point out that, in general, only some factors based on the observed covariates X contribute to selection of the treatment T, and only some to determining the outcomes Y. We model this by considering three underlying sources of {X, T, Y} and show that explicitly modeling these sources offers great insight to guide designing models that better handle selection bias. This paper is an attempt to conceptualize this line of thought and provide a path to explore it further.
33
+ In this work, we propose an algorithm to (1) identify disentangled representations of the above-mentioned underlying factors from any given observational dataset D and (2) leverage this knowledge to reduce, as well as account for, the negative impact of selection bias on estimating the treatment effects from D. Our empirical results show that the proposed method achieves state-of-the-art performance in both individual and population based evaluation measures."""
34
+
35
+ EXAMPLE_REVIEWS = [
36
+ """Summary:
37
+ The authors consider the problem of estimating average treatment effects when observed X and treatment T causes Y. Observational data for X,T,Y is available and strong ignorability is assumed. Previous work (Shalit et al 2017) introduced learning a representation that is invariant in distribution across treatment and control groups and using that with treatment to estimate Y. However, authors point out that this representation being forced to be invariant still does not drive the selection bias to zero. A follow up work (Hassanpour and Greiner 2019) - corrects for this by using additional importance weighting that estimates the treatment selection bias given the learnt representation. However, the authors point out even this is not complete in general, as X could be determined by three latent factors, one that is the actual confounder between treatment and outcome and the other that affects only the outcome and the other that affects only the treatment. Therefore, the authors propose to have three representations and enforce independence between representation that solely determines outcome and the treatment and make other appropriate terms depend on the respective latent factors. This gives a modified objective with respect to these two prior works.
38
+
39
+ The authors implement optimize this joint system on synthetic and real world datasets. They show that they outperform all these previous works because of explicitly accounting for confounder, latent factors that solely control only outcome and treatment assignment respectively.
40
+
41
+ Pros:
42
+ This paper directly addresses the problems due to Shalit 2017 that are still left open. The experimental results seems convincing on standard benchmarks.
43
+
44
+ I vote for accepting the paper. I don't have many concerns about this paper.
45
+
46
+ Cons:
47
+ - I have one question for the authors - if T and Y(0),Y(1) are independent given X is assumed, then how are we sure that the composite representations (of the three latent factors) are going to necessarily satisfy ignorability provably ?? I guess this cannot be formally established. It would be great for the authors to comment on this.""",
48
+
49
+ """The paper proposes a new way of estimating treatment effects from observational data, that decouples (disentangles) the observed covariates X into three sets: covariates that contributed to the selection of the treatment T, covariates that cause the outcome Y and covariates that do both. The authors show that by leveraging this additional structure they can improve upon existing methods in both ITE and ATE
50
+
51
+ The main contributions of the paper are:
52
+ * Highlighting the importance of differentiating between treatment and outcome inducing factors and proposing an algorithm to detect the two
53
+ * Creating a joint optimisation model that contains the factual loss, the cross entropy (treatment) loss and the imbalance loss
54
+
55
+ Overall, I like the paper quite a lot, I find it well-written and clearly motivated with a very nice experimental section that it is designed around understanding the behaviour of the proposed model.
56
+
57
+ In terms of suggestions, I think it will be very interesting to link the approaches using invariant causal representations with existing work in the Counterfactual Risk Minimization [1] literature and to mutualise the experimental setup.
58
+
59
+ [1] Swaminathan, Adith, and Thorsten Joachims. "Counterfactual risk minimization: Learning from logged bandit feedback." International Conference on Machine Learning. 2015.""",
60
+
61
+ """The paper proposes an algorithm that identifies disentangled representation to find out an individual treatment effect. A very specific model that tries to find out the underlying dynamics of such a problem is proposed and is learned by minimizing a suggested objective that takes the strengths of previous approaches. The method is demonstrated in a synthetic dataset and IHDP dataset and shown to outperform other previous methods by a large margin.
62
+
63
+ My initial review was negative, but I changed my mind after reading a few papers in this area. It seems that explicit learning of underlying factors that are described in (Hassanpour & Greiner, 2019) is a nice idea and works well. My only concern is that the paper has a lot of overlap with (Hassanpour & Greiner, 2019), even using identical figures. I am not sure whether it is OK."""
64
+ ]
65
+
66
  def update_progress(request_id: str, stage: str, progress: float, message: str):
67
  """Update progress for a request"""
68
  progress_store[request_id] = {
 
235
  return json.dumps(progress_store[request_id], indent=2)
236
  return json.dumps({"error": "Request ID not found"}, indent=2)
237
 
238
+ def load_example():
239
+ """Load example paper and reviews into the form"""
240
+ return (
241
+ EXAMPLE_PAPER_TITLE,
242
+ EXAMPLE_PAPER_ABSTRACT,
243
+ json.dumps(EXAMPLE_REVIEWS, indent=2)
244
+ )
245
+
246
+ def load_example_critiques():
247
+ """Load example reviews for critique extraction"""
248
+ return json.dumps(EXAMPLE_REVIEWS, indent=2)
249
+
250
  # Build Gradio Interface
251
  with gr.Blocks(title="Automated Consensus Analysis API", theme=gr.themes.Soft()) as demo:
252
  gr.Markdown("""
253
  # πŸ”¬ Automated Consensus Analysis API
254
 
255
  This API provides automated peer review consensus analysis using LLMs and search-augmented verification.
256
+
257
+ **Pipeline stages:**
258
+ 1. πŸ” **Critique Extraction** - Extract structured critique points from reviews (Gemini)
259
+ 2. ⚑ **Disagreement Detection** - Identify conflicts between reviewers
260
+ 3. πŸ”Ž **Search & Retrieval** - Find supporting evidence from academic sources
261
+ 4. 🧠 **Disagreement Resolution** - AI-powered resolution with reasoning (DeepSeek-R1)
262
+ 5. πŸ“ **Meta-Review Generation** - Comprehensive synthesis of all analyses
263
  """)
264
 
265
  with gr.Tabs():
 
268
  gr.Markdown("### Run the complete analysis pipeline")
269
  with gr.Row():
270
  with gr.Column():
271
+ full_title = gr.Textbox(
272
+ label="Paper Title",
273
+ placeholder="Enter paper title...",
274
+ lines=2
275
+ )
276
+ full_abstract = gr.Textbox(
277
+ label="Paper Abstract",
278
+ lines=8,
279
+ placeholder="Enter paper abstract..."
280
+ )
281
  full_reviews = gr.Code(
282
  label="Reviews (JSON Array)",
283
  language="json",
284
+ value='["Review 1 text...", "Review 2 text..."]',
285
+ lines=15
286
  )
287
+
288
+ with gr.Row():
289
+ load_example_btn = gr.Button("πŸ“₯ Load Example", variant="secondary")
290
+ full_submit = gr.Button("πŸš€ Run Full Pipeline", variant="primary")
291
+
292
+ gr.Markdown("""
293
+ πŸ’‘ **Tip:** Click "Load Example" to populate the form with a sample ICLR 2020 paper
294
+ on Counterfactual Regression with 3 peer reviews.
295
+ """)
296
+
297
  with gr.Column():
298
+ full_output = gr.Code(label="Results", language="json", lines=30)
299
+
300
+ load_example_btn.click(
301
+ fn=load_example,
302
+ inputs=[],
303
+ outputs=[full_title, full_abstract, full_reviews]
304
+ )
305
 
306
  full_submit.click(
307
  fn=run_full_pipeline_ui,
 
312
  # Individual Stages
313
  with gr.Tab("πŸ” Critique Extraction"):
314
  gr.Markdown("### Extract critique points from reviews")
315
+ gr.Markdown("Extract structured critique points categorized by: Methodology, Experiments, Clarity, Significance, Novelty")
316
+
317
+ critique_reviews = gr.Code(
318
+ label="Reviews (JSON Array)",
319
+ language="json",
320
+ lines=15
321
+ )
322
+
323
+ with gr.Row():
324
+ load_critique_example_btn = gr.Button("πŸ“₯ Load Example", variant="secondary")
325
+ critique_submit = gr.Button("Extract Critiques", variant="primary")
326
+
327
+ critique_output = gr.Code(label="Extracted Critiques", language="json", lines=20)
328
+
329
+ load_critique_example_btn.click(
330
+ fn=load_example_critiques,
331
+ inputs=[],
332
+ outputs=critique_reviews
333
+ )
334
 
335
  critique_submit.click(
336
  fn=run_critique_extraction_ui,
 
339
  )
340
 
341
  with gr.Tab("⚑ Disagreement Detection"):
342
+ gr.Markdown("### Detect disagreements between reviewers")
343
+ gr.Markdown("Compares critique points from multiple reviews and identifies conflicts with disagreement scores (0-1).")
344
+
345
+ disagree_critiques = gr.Code(
346
+ label="Critique Points (JSON) - Output from Critique Extraction",
347
+ language="json",
348
+ lines=15
349
+ )
350
+ disagree_submit = gr.Button("Detect Disagreements", variant="primary")
351
+ disagree_output = gr.Code(label="Disagreement Analysis", language="json", lines=20)
352
 
353
  disagree_submit.click(
354
  fn=run_disagreement_detection_ui,
 
357
  )
358
 
359
  with gr.Tab("πŸ”Ž Search & Retrieval"):
360
+ gr.Markdown("### Search for supporting evidence")
361
+ gr.Markdown("Searches Semantic Scholar, arXiv, and Tavily for state-of-the-art research and evidence to validate critiques.")
362
+
363
  with gr.Row():
364
  with gr.Column():
365
+ search_title = gr.Textbox(label="Paper Title", lines=2)
366
+ search_abstract = gr.Textbox(label="Paper Abstract", lines=5)
367
+ search_critiques = gr.Code(
368
+ label="Critiques (JSON) - Output from Critique Extraction",
369
+ language="json",
370
+ lines=10
371
+ )
372
+ search_submit = gr.Button("Search Evidence", variant="primary")
373
  with gr.Column():
374
+ search_output = gr.Code(label="Search Results", language="json", lines=25)
375
 
376
  search_submit.click(
377
  fn=run_search_retrieval_ui,
 
380
  )
381
 
382
  with gr.Tab("πŸ“– API Documentation"):
383
+ gr.Markdown("""
384
+ ## API Endpoints
385
+
386
+ ### Full Pipeline
387
+ **Endpoint**: `/api/full_pipeline`
388
+ **Method**: POST
389
+
390
+ ```json
391
+ {
392
+ "paper_title": "Your Paper Title",
393
+ "paper_abstract": "Your paper abstract...",
394
+ "reviews": ["Review 1 text...", "Review 2 text..."]
395
+ }
396
+ ```
397
+
398
+ ### Individual Stages
399
+
400
+ | Endpoint | Description |
401
+ |----------|-------------|
402
+ | `/api/critique_extraction` | Extract critique points from reviews |
403
+ | `/api/disagreement_detection` | Detect disagreements between critiques |
404
+ | `/api/search_retrieval` | Search for supporting evidence |
405
+
406
+ ### Rate Limits
407
+ - **10 requests per minute** per client
408
+ - **Maximum 3 concurrent** pipeline executions
409
+
410
+ ### Example Python Usage
411
+ ```python
412
+ import requests
413
+
414
+ response = requests.post(
415
+ "https://your-space.hf.space/api/full_pipeline",
416
+ json={
417
+ "paper_title": "Novel Approach to X",
418
+ "paper_abstract": "We propose...",
419
+ "reviews": ["Review 1...", "Review 2..."]
420
+ }
421
+ )
422
+ result = response.json()
423
+ print(result["meta_review"])
424
+ ```
425
+ """)
426
+
427
+ with gr.Tab("ℹ️ About"):
428
+ gr.Markdown("""
429
+ ## About This Tool
430
+
431
+ This API provides automated peer review consensus analysis using state-of-the-art LLMs
432
+ and search-augmented verification.
433
+
434
+ ### Models Used
435
+ - **Gemini 2.5 Flash Lite** - Critique extraction and disagreement detection
436
+ - **DeepSeek-R1** - Disagreement resolution and meta-review generation (with reasoning)
437
+
438
+ ### Search Sources
439
+ - Semantic Scholar
440
+ - arXiv
441
+ - Tavily Search
442
+ - Google Scholar (via SerpAPI)
443
+
444
+ ### Example Paper
445
+ The example paper is from **ICLR 2020**: *"Learning Disentangled Representations for
446
+ CounterFactual Regression"* which addresses estimating treatment effects from observational
447
+ data using disentangled representations.
448
+
449
+ ### License
450
+ MIT License - See repository for details.
451
+ """)
452
 
453
  # Launch the app
454
  if __name__ == "__main__":