Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
# Load pre-trained model and tokenizer
|
| 6 |
+
model_name = "distilbert-base-uncased"
|
| 7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
# Define a function to search for Samba songs
|
| 11 |
+
def search_samba(query):
|
| 12 |
+
# Tokenize the query
|
| 13 |
+
inputs = tokenizer(query, return_tensors="pt")
|
| 14 |
+
|
| 15 |
+
# Get the model's output
|
| 16 |
+
outputs = model(**inputs)
|
| 17 |
+
|
| 18 |
+
# Get the predicted class probabilities
|
| 19 |
+
logits = outputs.logits
|
| 20 |
+
probs = torch.nn.functional.softmax(logits, dim=1)
|
| 21 |
+
|
| 22 |
+
# Return the top 5 Samba song matches
|
| 23 |
+
top_5 = torch.topk(probs, k=5)
|
| 24 |
+
return top_5.indices, top_5.values
|
| 25 |
+
|
| 26 |
+
# Create a Streamlit app
|
| 27 |
+
st.title("Samba Search")
|
| 28 |
+
|
| 29 |
+
# Get user input
|
| 30 |
+
query = st.text_input("Enter a song title or artist")
|
| 31 |
+
|
| 32 |
+
# Search for Samba songs
|
| 33 |
+
if st.button("Search"):
|
| 34 |
+
indices, values = search_samba(query)
|
| 35 |
+
|
| 36 |
+
# Display the top 5 matches
|
| 37 |
+
st.write("Top 5 Samba Song Matches:")
|
| 38 |
+
for i, (index, value) in enumerate(zip(indices[0], values[0])):
|
| 39 |
+
st.write(f"{i+1}. Song {index.item()} - Probability: {value.item():.2f}")
|