Werli commited on
Commit
c85588d
·
verified ·
1 Parent(s): 4025d33

Delete modules/florence2.py

Browse files
Files changed (1) hide show
  1. modules/florence2.py +0 -91
modules/florence2.py DELETED
@@ -1,91 +0,0 @@
1
- import os,io,copy,subprocess,spaces,matplotlib.pyplot as plt,matplotlib.patches as patches,random,numpy as np
2
- from PIL import Image,ImageDraw,ImageFont
3
- from unittest.mock import patch
4
- from transformers.dynamic_module_utils import get_imports
5
- from transformers import AutoProcessor,AutoModelForCausalLM
6
- import gradio as gr
7
-
8
- def fixed_get_imports(filename:str|os.PathLike)->list[str]:
9
- if not str(filename).endswith('/modeling_florence2.py'):return get_imports(filename)
10
- imports=get_imports(filename)
11
- if'flash_attn'in imports:imports.remove('flash_attn')
12
- return imports
13
- @spaces.GPU
14
- def get_device_type():
15
- import torch
16
- if torch.cuda.is_available():return'cuda'
17
- elif torch.backends.mps.is_available()and torch.backends.mps.is_built():return'mps'
18
- else:return'cpu'
19
- device = get_device_type()
20
- if (device == "cuda"):
21
- subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
22
- model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v2.0", trust_remote_code=True)
23
- processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v2.0", trust_remote_code=True)
24
- model.to(device)
25
- else:
26
- with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
27
- model = AutoModelForCausalLM.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v2.0", trust_remote_code=True)
28
- processor = AutoProcessor.from_pretrained("MiaoshouAI/Florence-2-base-PromptGen-v2.0", trust_remote_code=True)
29
- model.to(device)
30
-
31
- colormap=['blue','orange','green','purple','brown','pink','gray','olive','cyan','red','lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
32
-
33
- def fig_to_pil(fig):buf=io.BytesIO();fig.savefig(buf,format='png');buf.seek(0);return Image.open(buf)
34
- @spaces.GPU
35
- def run_example(task_prompt,image,text_input=None):
36
- if text_input is None:prompt=task_prompt
37
- else:prompt=task_prompt+text_input
38
- inputs=processor(text=prompt,images=image,return_tensors='pt').to(device);generated_ids=model.generate(input_ids=inputs['input_ids'],pixel_values=inputs['pixel_values'],max_new_tokens=1024,early_stopping=False,do_sample=False,num_beams=3);generated_text=processor.batch_decode(generated_ids,skip_special_tokens=False)[0];parsed_answer=processor.post_process_generation(generated_text,task=task_prompt,image_size=(image.width,image.height));return parsed_answer
39
- def plot_bbox(image,data):
40
- fig,ax=plt.subplots();ax.imshow(image)
41
- for(bbox,label)in zip(data['bboxes'],data['labels']):x1,y1,x2,y2=bbox;rect=patches.Rectangle((x1,y1),x2-x1,y2-y1,linewidth=1,edgecolor='r',facecolor='none');ax.add_patch(rect);plt.text(x1,y1,label,color='white',fontsize=8,bbox=dict(facecolor='red',alpha=.5))
42
- ax.axis('off');return fig
43
- def draw_polygons(image,prediction,fill_mask=False):
44
- draw=ImageDraw.Draw(image);scale=1
45
- for(polygons,label)in zip(prediction['polygons'],prediction['labels']):
46
- color=random.choice(colormap);fill_color=random.choice(colormap)if fill_mask else None
47
- for _polygon in polygons:
48
- _polygon=np.array(_polygon).reshape(-1,2)
49
- if len(_polygon)<3:print('Invalid polygon:',_polygon);continue
50
- _polygon=(_polygon*scale).reshape(-1).tolist()
51
- if fill_mask:draw.polygon(_polygon,outline=color,fill=fill_color)
52
- else:draw.polygon(_polygon,outline=color)
53
- draw.text((_polygon[0]+8,_polygon[1]+2),label,fill=color)
54
- return image
55
-
56
- def draw_ocr_bboxes(image,prediction):
57
- scale=1;draw=ImageDraw.Draw(image);bboxes,labels=prediction['quad_boxes'],prediction['labels']
58
- for(box,label)in zip(bboxes,labels):color=random.choice(colormap);new_box=(np.array(box)*scale).tolist();draw.polygon(new_box,width=3,outline=color);draw.text((new_box[0]+8,new_box[1]+2),'{}'.format(label),align='right',fill=color)
59
- return image
60
- def convert_to_od_format(data):bboxes=data.get('bboxes',[]);labels=data.get('bboxes_labels',[]);od_results={'bboxes':bboxes,'labels':labels};return od_results
61
-
62
- def process_image(image,task_prompt,text_input=None):
63
- if isinstance(image,str):image=Image.open(image)
64
- else:image=Image.fromarray(image)
65
- if task_prompt=='Caption':task_prompt='<CAPTION>';results=run_example(task_prompt,image);return results[task_prompt],None
66
- elif task_prompt=='Detailed Caption':task_prompt='<DETAILED_CAPTION>';results=run_example(task_prompt,image);return results[task_prompt],None
67
- elif task_prompt=='More Detailed Caption':task_prompt='<MORE_DETAILED_CAPTION>';results=run_example(task_prompt,image);return results,None
68
- elif task_prompt=='Caption + Grounding':task_prompt='<CAPTION>';results=run_example(task_prompt,image);text_input=results[task_prompt];task_prompt='<CAPTION_TO_PHRASE_GROUNDING>';results=run_example(task_prompt,image,text_input);results['<CAPTION>']=text_input;fig=plot_bbox(image,results['<CAPTION_TO_PHRASE_GROUNDING>']);return results,fig_to_pil(fig)
69
- elif task_prompt=='Detailed Caption + Grounding':task_prompt='<DETAILED_CAPTION>';results=run_example(task_prompt,image);text_input=results[task_prompt];task_prompt='<CAPTION_TO_PHRASE_GROUNDING>';results=run_example(task_prompt,image,text_input);results['<DETAILED_CAPTION>']=text_input;fig=plot_bbox(image,results['<CAPTION_TO_PHRASE_GROUNDING>']);return results,fig_to_pil(fig)
70
- elif task_prompt=='More Detailed Caption + Grounding':task_prompt='<MORE_DETAILED_CAPTION>';results=run_example(task_prompt,image);text_input=results[task_prompt];task_prompt='<CAPTION_TO_PHRASE_GROUNDING>';results=run_example(task_prompt,image,text_input);results['<MORE_DETAILED_CAPTION>']=text_input;fig=plot_bbox(image,results['<CAPTION_TO_PHRASE_GROUNDING>']);return results,fig_to_pil(fig)
71
- elif task_prompt=='Object Detection':task_prompt='<OD>';results=run_example(task_prompt,image);fig=plot_bbox(image,results['<OD>']);return results,fig_to_pil(fig)
72
- elif task_prompt=='Dense Region Caption':task_prompt='<DENSE_REGION_CAPTION>';results=run_example(task_prompt,image);fig=plot_bbox(image,results['<DENSE_REGION_CAPTION>']);return results,fig_to_pil(fig)
73
- elif task_prompt=='Region Proposal':task_prompt='<REGION_PROPOSAL>';results=run_example(task_prompt,image);fig=plot_bbox(image,results['<REGION_PROPOSAL>']);return results,fig_to_pil(fig)
74
- elif task_prompt=='Caption to Phrase Grounding':task_prompt='<CAPTION_TO_PHRASE_GROUNDING>';results=run_example(task_prompt,image,text_input);fig=plot_bbox(image,results['<CAPTION_TO_PHRASE_GROUNDING>']);return results,fig_to_pil(fig)
75
- elif task_prompt=='Referring Expression Segmentation':task_prompt='<REFERRING_EXPRESSION_SEGMENTATION>';results=run_example(task_prompt,image,text_input);output_image=copy.deepcopy(image);output_image=draw_polygons(output_image,results['<REFERRING_EXPRESSION_SEGMENTATION>'],fill_mask=True);return results,output_image
76
- elif task_prompt=='Region to Segmentation':task_prompt='<REGION_TO_SEGMENTATION>';results=run_example(task_prompt,image,text_input);output_image=copy.deepcopy(image);output_image=draw_polygons(output_image,results['<REGION_TO_SEGMENTATION>'],fill_mask=True);return results,output_image
77
- elif task_prompt=='Open Vocabulary Detection':task_prompt='<OPEN_VOCABULARY_DETECTION>';results=run_example(task_prompt,image,text_input);bbox_results=convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>']);fig=plot_bbox(image,bbox_results);return results,fig_to_pil(fig)
78
- elif task_prompt=='Region to Category':task_prompt='<REGION_TO_CATEGORY>';results=run_example(task_prompt,image,text_input);return results,None
79
- elif task_prompt=='Region to Description':task_prompt='<REGION_TO_DESCRIPTION>';results=run_example(task_prompt,image,text_input);return results,None
80
- elif task_prompt=='OCR':task_prompt='<OCR>';results=run_example(task_prompt,image);return results,None
81
- elif task_prompt=='OCR with Region':task_prompt='<OCR_WITH_REGION>';results=run_example(task_prompt,image);output_image=copy.deepcopy(image);output_image=draw_ocr_bboxes(output_image,results['<OCR_WITH_REGION>']);return results,output_image
82
- else:return'',None # Return empty string and None for unknown task prompts
83
-
84
- single_task_list=['Caption','Detailed Caption','More Detailed Caption','Object Detection','Dense Region Caption','Region Proposal','Caption to Phrase Grounding','Referring Expression Segmentation','Region to Segmentation','Open Vocabulary Detection','Region to Category','Region to Description','OCR','OCR with Region']
85
- cascaded_task_list=['Caption + Grounding','Detailed Caption + Grounding','More Detailed Caption + Grounding']
86
-
87
- def update_task_dropdown(choice):
88
- if choice == 'Cascaded task':
89
- return gr.Dropdown(choices=cascaded_task_list, value='Caption + Grounding')
90
- else:
91
- return gr.Dropdown(choices=single_task_list, value='Caption')