File size: 10,818 Bytes
518d9ff aebe391 f357acb aebe391 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 |
---
title: Chronos 2 Forecasting
emoji: π
colorFrom: blue
colorTo: purple
sdk: docker
pinned: false
license: apache-2.0
---
# Chronos 2 Time Series Forecasting Application
A production-ready web application for testing Amazon's **Chronos 2** time series forecasting model using the latest `Chronos2Pipeline` API. Built with Dash for enterprise scalability and designed for both local development and cloud deployment.
## Features
- **Latest Chronos 2 API**: Uses `Chronos2Pipeline.predict_df()` with DataFrame-based interface
- **Interactive Forecasting**: Generate forecasts up to 365 days with adjustable confidence intervals
- **Dual Model Support**: Switch between Fast (Chronos-Bolt) and Accurate (Chronos-2) variants
- **Multivariate Ready**: Built on Chronos 2 architecture supporting multivariate forecasting
- **Flexible Data Input**: Upload CSV/Excel files or use sample datasets
- **Rich Visualizations**: Interactive Plotly charts with confidence bands and zoom capabilities
- **Data Quality Analysis**: Automatic preprocessing with quality reports
- **GPU Acceleration**: Automatic CUDA support with CPU fallback
- **Security Hardened**: Non-root Docker containers, server-side validation, filename sanitization
- **Production Ready**: Designed for deployment on local machines or Databricks Apps
## Architecture
Built following best practices for scalability and maintainability:
- **Dash Framework**: Handles thousands of concurrent users
- **Plotly Visualizations**: Smooth rendering of 100K+ data points
- **Model Caching**: Chronos 2 loaded once at startup for fast inference
- **Client-Side State**: Efficient state management without server sessions
- **Modular Design**: Clean separation of components, services, and utilities
## Installation
### Prerequisites
- Python 3.10+
- CUDA-capable GPU (optional, for faster inference)
- 8GB+ RAM (4-8GB for model + overhead)
### Local Setup
1. **Clone the repository**
```bash
git clone <repository-url>
cd chronos2-forecasting-app
```
2. **Create a virtual environment**
```bash
python -m venv venv
# On Windows
venv\Scripts\activate
# On Linux/Mac
source venv/bin/activate
```
3. **Install dependencies**
```bash
pip install -r requirements.txt
```
4. **Run the application**
```bash
python app.py
```
5. **Access the app**
Open your browser to `http://127.0.0.1:8050`
## Usage Guide
### Quick Start
1. **Load Sample Data**
- Click one of the sample dataset buttons (Electricity, Retail, Manufacturing)
- Or upload your own CSV/Excel file
2. **Configure Data**
- Select the date column
- Select the target variable to forecast
- (Optional) Select an ID column for multivariate series
3. **Set Forecast Parameters**
- Adjust the forecast horizon (1-365 days)
- Select confidence levels (80%, 90%, 95%, 99%)
- Choose model variant (Fast or Accurate)
4. **Generate Forecast**
- Click "Generate Forecast" button
- Wait for model inference (typically 1-5 seconds)
- View interactive chart with confidence intervals
### Data Requirements
Your data should have:
- **Date column**: Any standard date format
- **Target column**: Numeric values to forecast
- **Minimum rows**: At least 2x the forecast horizon
- **File size**: Up to 100MB
- **Formats**: CSV, XLSX, XLS
### Tips for Best Results
- Use at least 2x the forecast horizon in historical data
- Clean your data before upload (though the app handles basic preprocessing)
- Start with the Fast model variant for quick testing
- Use the Accurate variant for final forecasts
- Larger confidence intervals provide more conservative forecasts
## Project Structure
```
chronos2-forecasting-app/
βββ app.py # Main Dash application
βββ components/ # UI components
β βββ upload.py # File upload component
β βββ chart.py # Chart generation
β βββ controls.py # Parameter controls
βββ services/ # Business logic
β βββ model_service.py # Chronos model wrapper
β βββ data_processor.py # Data preprocessing
β βββ cache_manager.py # Caching logic
βββ utils/ # Utilities
β βββ validators.py # Input validation
β βββ metrics.py # Forecast metrics
βββ config/ # Configuration
β βββ settings.py # Environment settings
β βββ constants.py # App constants
βββ datasets/ # Sample datasets
βββ static/ # Static assets
β βββ custom.css # Custom styles
βββ requirements.txt # Python dependencies
βββ Dockerfile # Container definition
βββ README.md # This file
```
## Configuration
### Environment Variables
- `ENVIRONMENT`: Set to `local` or `production`
- `DEVICE`: Set to `auto`, `cuda`, or `cpu`
- `LOG_LEVEL`: Set to `DEBUG`, `INFO`, `WARNING`, or `ERROR`
- `DATABRICKS_APP_PORT`: Port for Databricks deployment (default: 8080)
### Local vs Databricks Configuration
The app automatically detects the environment and adjusts settings:
**Local Development:**
- Host: 127.0.0.1
- Port: 8050
- Debug: Enabled
- Storage: Local directories
**Databricks Deployment:**
- Host: 0.0.0.0
- Port: 8080 (or DATABRICKS_APP_PORT)
- Debug: Disabled
- Storage: /tmp and /dbfs
## Deployment
### Hugging Face Spaces (Recommended for Free Hosting)
The easiest way to deploy this app for free:
1. **Create a Hugging Face account** at https://huggingface.co
2. **Create a new Space**
- Go to https://huggingface.co/spaces
- Click "Create new Space"
- Select "Dash" as the SDK
- Choose a name for your Space
3. **Upload your code**
- Option A: Connect your GitHub repository (recommended)
- Option B: Upload files directly through the web interface
4. **Configure the Space**
- The app will automatically use `app.py` as the entry point
- HuggingFace Spaces provides 16GB RAM (sufficient for Chronos-2)
- Optional: Request GPU upgrade for faster inference
5. **Access your deployed app**
- Your app will be live at: `https://huggingface.co/spaces/YOUR_USERNAME/YOUR_SPACE_NAME`
**Note**: First startup may take 2-3 minutes as the Chronos-2 model downloads (~500MB).
### Docker Deployment
1. **Build the image**
```bash
docker build -t chronos2-forecasting .
```
2. **Run the container**
```bash
docker run -p 8080:8080 chronos2-forecasting
```
3. **With GPU support**
```bash
docker run --gpus all -p 8080:8080 chronos2-forecasting
```
### Databricks Apps Deployment
1. **Upload code to DBFS**
```bash
databricks fs cp -r . dbfs:/apps/chronos2-forecasting/
```
2. **Create Databricks App**
- Use the Databricks Apps UI
- Point to the uploaded directory
- Set environment variable: `ENVIRONMENT=production`
3. **Configure resources**
- Minimum: 8GB RAM
- Recommended: GPU instance for faster inference
### Production Considerations
- **Memory**: Allocate 6-8GB for the model + overhead
- **Scaling**: Use multiple workers with Gunicorn
- **Monitoring**: Check `/health` endpoint for status
- **Logging**: Logs to stdout for easy collection
- **Timeouts**: Set to 300s+ for large forecasts
## API Reference
### Health Check Endpoint
```
GET /health
```
Returns:
```json
{
"status": "healthy",
"model_loaded": true,
"model_variant": "fast",
"device": "cuda"
}
```
## Troubleshooting
### Model Loading Issues
**Problem**: Model fails to load
- Check available memory (need 4-8GB)
- Try CPU mode: Set `DEVICE=cpu`
- Check internet connection (first run downloads model)
### GPU Not Detected
**Problem**: CUDA device not found
- Verify CUDA installation: `python -c "import torch; print(torch.cuda.is_available())"`
- Install correct PyTorch version for your CUDA
- App will automatically fall back to CPU
### Upload Failures
**Problem**: File upload fails
- Check file size (<100MB)
- Verify file format (CSV, XLSX, XLS)
- Ensure file is not corrupted
### Slow Performance
**Problem**: Forecasts take too long
- Use Fast model variant instead of Accurate
- Reduce forecast horizon
- Enable GPU acceleration
- Limit data points (app decimates to 10K for display)
### Memory Errors
**Problem**: Out of memory during inference
- Switch to Fast model variant (smaller)
- Use CPU instead of GPU
- Reduce batch size in model_service.py
- Close other applications
## Performance Tuning
### For Development
- Enable debug mode for detailed logging
- Use Fast model variant
- Work with smaller datasets initially
### For Production
- Disable debug mode
- Use GPU for inference
- Enable caching (already configured)
- Use Gunicorn with 4 workers
- Set up monitoring and alerting
## Contributing
Contributions are welcome! Please:
1. Fork the repository
2. Create a feature branch
3. Make your changes
4. Add tests if applicable
5. Submit a pull request
## License
This project is provided as-is for educational and research purposes.
## Acknowledgments
- **Chronos Model**: Amazon Science
- **Dash Framework**: Plotly
- **Sample Data**: Generated for demonstration purposes
## Support
For issues, questions, or suggestions:
- Open an issue in the repository
- Check existing documentation
- Review troubleshooting guide above
## Changelog
### Version 1.0.1 (Latest - Chronos 2 Full Implementation)
- **BREAKING**: Migrated to Chronos 2 API with `Chronos2Pipeline`
- Fixed deprecated pandas methods (`fillna(method=...)` β `ffill()`/`bfill()`)
- Updated to `chronos-forecasting==2.0.0` package
- Fixed type hints (`any` β `Any`) across all modules
- Added DataFrame-based prediction interface
- Security improvements:
- Non-root user in Docker container
- Server-side file validation
- Filename sanitization
- Health check timeout configuration
- Updated model paths to support Chronos-2 (s3://autogluon/chronos-2)
- Fixed data format compatibility (id/timestamp/target columns)
- Added `requests` library for health checks
### Version 1.0.0 (Initial Release)
- Chronos 2 model integration
- Single-page Dash application
- CSV/Excel upload support
- Interactive visualizations
- Confidence interval display
- Sample datasets included
- Docker deployment ready
- Databricks Apps compatible
## Roadmap
Future enhancements being considered:
- Multi-series forecasting UI
- Model comparison features
- Export forecast results
- Custom model fine-tuning
- Real-time data streaming
- Advanced metrics dashboard
- API-only mode for programmatic access
---
Built with Dash and Chronos 2 for production-ready time series forecasting.
|