Upload folder using huggingface_hub
Browse files- components/__init__.py +0 -0
- components/__pycache__/__init__.cpython-311.pyc +0 -0
- components/__pycache__/chart.cpython-311.pyc +0 -0
- components/__pycache__/controls.cpython-311.pyc +0 -0
- components/__pycache__/upload.cpython-311.pyc +0 -0
- components/chart.py +309 -0
- components/controls.py +265 -0
- components/upload.py +347 -0
components/__init__.py
ADDED
|
File without changes
|
components/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (166 Bytes). View file
|
|
|
components/__pycache__/chart.cpython-311.pyc
ADDED
|
Binary file (11.8 kB). View file
|
|
|
components/__pycache__/controls.cpython-311.pyc
ADDED
|
Binary file (9.05 kB). View file
|
|
|
components/__pycache__/upload.cpython-311.pyc
ADDED
|
Binary file (14.3 kB). View file
|
|
|
components/chart.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Chart generation for forecast visualization
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import plotly.graph_objs as go
|
| 6 |
+
from plotly.subplots import make_subplots
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from typing import List
|
| 9 |
+
from config.constants import COLORS, CHART_CONFIG
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def create_forecast_chart(
|
| 13 |
+
historical_data: pd.DataFrame,
|
| 14 |
+
forecast_data: pd.DataFrame,
|
| 15 |
+
confidence_levels: List[int],
|
| 16 |
+
title: str = "Time Series Forecast",
|
| 17 |
+
y_axis_label: str = "Value",
|
| 18 |
+
backtest_data: pd.DataFrame = None
|
| 19 |
+
) -> go.Figure:
|
| 20 |
+
"""
|
| 21 |
+
Create an interactive forecast chart with confidence intervals
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
historical_data: DataFrame with columns ['ds', 'y']
|
| 25 |
+
forecast_data: DataFrame with forecast and confidence intervals
|
| 26 |
+
confidence_levels: List of confidence levels to plot
|
| 27 |
+
title: Chart title
|
| 28 |
+
y_axis_label: Label for y-axis (variable name being forecasted)
|
| 29 |
+
backtest_data: Optional DataFrame with backtest results
|
| 30 |
+
|
| 31 |
+
Returns:
|
| 32 |
+
Plotly figure
|
| 33 |
+
"""
|
| 34 |
+
fig = go.Figure()
|
| 35 |
+
|
| 36 |
+
# Add historical data
|
| 37 |
+
fig.add_trace(go.Scatter(
|
| 38 |
+
x=historical_data['ds'],
|
| 39 |
+
y=historical_data['y'],
|
| 40 |
+
mode='lines',
|
| 41 |
+
name='Historical',
|
| 42 |
+
line=dict(color=COLORS['historical'], width=2),
|
| 43 |
+
hovertemplate=f'<b>Date:</b> %{{x}}<br><b>{y_axis_label}:</b> %{{y:.2f}}<extra></extra>'
|
| 44 |
+
))
|
| 45 |
+
|
| 46 |
+
# Add backtest data if provided (shows model performance on historical data)
|
| 47 |
+
if backtest_data is not None and len(backtest_data) > 0:
|
| 48 |
+
# Add actual values from backtest period
|
| 49 |
+
fig.add_trace(go.Scatter(
|
| 50 |
+
x=backtest_data['timestamp'],
|
| 51 |
+
y=backtest_data['actual'],
|
| 52 |
+
mode='lines',
|
| 53 |
+
name='Backtest Actual',
|
| 54 |
+
line=dict(color='rgba(100, 100, 100, 0.6)', width=2, dash='dot'),
|
| 55 |
+
hovertemplate=f'<b>Date:</b> %{{x}}<br><b>{y_axis_label} (Actual):</b> %{{y:.2f}}<extra></extra>'
|
| 56 |
+
))
|
| 57 |
+
|
| 58 |
+
# Add predicted values from backtest period
|
| 59 |
+
fig.add_trace(go.Scatter(
|
| 60 |
+
x=backtest_data['timestamp'],
|
| 61 |
+
y=backtest_data['predicted'],
|
| 62 |
+
mode='lines',
|
| 63 |
+
name='Backtest Predicted',
|
| 64 |
+
line=dict(color='rgba(255, 100, 100, 0.8)', width=2),
|
| 65 |
+
hovertemplate=f'<b>Date:</b> %{{x}}<br><b>{y_axis_label} (Predicted):</b> %{{y:.2f}}<extra></extra>'
|
| 66 |
+
))
|
| 67 |
+
|
| 68 |
+
# Add confidence bands (from widest to narrowest)
|
| 69 |
+
for cl in sorted(confidence_levels, reverse=True):
|
| 70 |
+
lower_col = f'lower_{cl}'
|
| 71 |
+
upper_col = f'upper_{cl}'
|
| 72 |
+
|
| 73 |
+
if lower_col in forecast_data.columns and upper_col in forecast_data.columns:
|
| 74 |
+
# Add filled area for confidence interval
|
| 75 |
+
fig.add_trace(go.Scatter(
|
| 76 |
+
x=forecast_data['ds'].tolist() + forecast_data['ds'].tolist()[::-1],
|
| 77 |
+
y=forecast_data[upper_col].tolist() + forecast_data[lower_col].tolist()[::-1],
|
| 78 |
+
fill='toself',
|
| 79 |
+
fillcolor=COLORS['confidence'][cl],
|
| 80 |
+
line=dict(width=0),
|
| 81 |
+
name=f'{cl}% Confidence',
|
| 82 |
+
showlegend=True,
|
| 83 |
+
hoverinfo='skip'
|
| 84 |
+
))
|
| 85 |
+
|
| 86 |
+
# Add forecast line
|
| 87 |
+
fig.add_trace(go.Scatter(
|
| 88 |
+
x=forecast_data['ds'],
|
| 89 |
+
y=forecast_data['forecast'],
|
| 90 |
+
mode='lines',
|
| 91 |
+
name='Forecast',
|
| 92 |
+
line=dict(color=COLORS['forecast'], width=2),
|
| 93 |
+
hovertemplate=f'<b>Date:</b> %{{x}}<br><b>{y_axis_label} (Forecast):</b> %{{y:.2f}}<extra></extra>'
|
| 94 |
+
))
|
| 95 |
+
|
| 96 |
+
# Add vertical separator line
|
| 97 |
+
if len(historical_data) > 0:
|
| 98 |
+
last_historical_date = historical_data['ds'].iloc[-1]
|
| 99 |
+
# Use add_shape instead of add_vline to avoid Timestamp arithmetic issues
|
| 100 |
+
fig.add_shape(
|
| 101 |
+
type="line",
|
| 102 |
+
x0=last_historical_date,
|
| 103 |
+
x1=last_historical_date,
|
| 104 |
+
y0=0,
|
| 105 |
+
y1=1,
|
| 106 |
+
yref="paper",
|
| 107 |
+
line=dict(color=COLORS['separator'], dash="dash", width=1)
|
| 108 |
+
)
|
| 109 |
+
# Add annotation
|
| 110 |
+
fig.add_annotation(
|
| 111 |
+
x=last_historical_date,
|
| 112 |
+
y=1.0,
|
| 113 |
+
yref="paper",
|
| 114 |
+
text="Forecast Start",
|
| 115 |
+
showarrow=False,
|
| 116 |
+
yanchor="bottom"
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
# Update layout
|
| 120 |
+
fig.update_layout(
|
| 121 |
+
title=dict(text=title, x=0.5, xanchor='center'),
|
| 122 |
+
xaxis_title="Date",
|
| 123 |
+
yaxis_title=y_axis_label,
|
| 124 |
+
hovermode='x unified',
|
| 125 |
+
template='plotly_white',
|
| 126 |
+
height=700, # Increased height to accommodate rangeslider
|
| 127 |
+
showlegend=True,
|
| 128 |
+
legend=dict(
|
| 129 |
+
orientation="h",
|
| 130 |
+
yanchor="bottom",
|
| 131 |
+
y=1.02,
|
| 132 |
+
xanchor="right",
|
| 133 |
+
x=1
|
| 134 |
+
),
|
| 135 |
+
margin=dict(l=50, r=50, t=80, b=150), # Increased bottom margin for larger rangeslider
|
| 136 |
+
xaxis=dict(
|
| 137 |
+
rangeslider=dict(
|
| 138 |
+
visible=True,
|
| 139 |
+
thickness=0.12 # Wider slider (12% of chart height)
|
| 140 |
+
),
|
| 141 |
+
type='date'
|
| 142 |
+
)
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# Update config
|
| 146 |
+
fig.update_layout(
|
| 147 |
+
modebar_add=['v1hovermode', 'toggleSpikelines']
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
return fig
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def create_empty_chart(message: str = "No data available") -> go.Figure:
|
| 154 |
+
"""
|
| 155 |
+
Create an empty placeholder chart
|
| 156 |
+
|
| 157 |
+
Args:
|
| 158 |
+
message: Message to display
|
| 159 |
+
|
| 160 |
+
Returns:
|
| 161 |
+
Plotly figure
|
| 162 |
+
"""
|
| 163 |
+
fig = go.Figure()
|
| 164 |
+
|
| 165 |
+
fig.add_annotation(
|
| 166 |
+
text=message,
|
| 167 |
+
xref="paper",
|
| 168 |
+
yref="paper",
|
| 169 |
+
x=0.5,
|
| 170 |
+
y=0.5,
|
| 171 |
+
showarrow=False,
|
| 172 |
+
font=dict(size=20, color='gray')
|
| 173 |
+
)
|
| 174 |
+
|
| 175 |
+
fig.update_layout(
|
| 176 |
+
template='plotly_white',
|
| 177 |
+
height=600,
|
| 178 |
+
xaxis=dict(visible=False),
|
| 179 |
+
yaxis=dict(visible=False)
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
return fig
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def create_metrics_display(metrics: dict, inference_time: float = None) -> list:
|
| 186 |
+
"""
|
| 187 |
+
Create metrics display components
|
| 188 |
+
|
| 189 |
+
Args:
|
| 190 |
+
metrics: Dictionary of metric values
|
| 191 |
+
inference_time: Time taken for inference in seconds
|
| 192 |
+
|
| 193 |
+
Returns:
|
| 194 |
+
List of Dash components
|
| 195 |
+
"""
|
| 196 |
+
import dash_bootstrap_components as dbc
|
| 197 |
+
from dash import html
|
| 198 |
+
|
| 199 |
+
metric_cards = []
|
| 200 |
+
|
| 201 |
+
# Add inference time if available
|
| 202 |
+
if inference_time is not None:
|
| 203 |
+
metric_cards.append(
|
| 204 |
+
dbc.Col([
|
| 205 |
+
dbc.Card([
|
| 206 |
+
dbc.CardBody([
|
| 207 |
+
html.H6("Inference Time", className="text-muted mb-2"),
|
| 208 |
+
html.H4(f"{inference_time:.2f}s")
|
| 209 |
+
])
|
| 210 |
+
], className="text-center")
|
| 211 |
+
], md=2)
|
| 212 |
+
)
|
| 213 |
+
|
| 214 |
+
# Add other metrics
|
| 215 |
+
metric_names = {
|
| 216 |
+
'MAE': 'Mean Absolute Error',
|
| 217 |
+
'RMSE': 'Root Mean Squared Error',
|
| 218 |
+
'MAPE': 'Mean Absolute % Error',
|
| 219 |
+
'R2': 'R-Squared'
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
for key, name in metric_names.items():
|
| 223 |
+
if key in metrics and metrics[key] is not None:
|
| 224 |
+
value = metrics[key]
|
| 225 |
+
if key in ['MAPE']:
|
| 226 |
+
formatted_value = f"{value:.2f}%"
|
| 227 |
+
elif key == 'R2':
|
| 228 |
+
formatted_value = f"{value:.4f}"
|
| 229 |
+
else:
|
| 230 |
+
formatted_value = f"{value:.2f}"
|
| 231 |
+
|
| 232 |
+
metric_cards.append(
|
| 233 |
+
dbc.Col([
|
| 234 |
+
dbc.Card([
|
| 235 |
+
dbc.CardBody([
|
| 236 |
+
html.H6(name, className="text-muted mb-2"),
|
| 237 |
+
html.H4(formatted_value)
|
| 238 |
+
])
|
| 239 |
+
], className="text-center")
|
| 240 |
+
], md=2)
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
return metric_cards
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def create_backtest_metrics_display(metrics: dict) -> list:
|
| 247 |
+
"""
|
| 248 |
+
Create backtest metrics display components
|
| 249 |
+
|
| 250 |
+
Args:
|
| 251 |
+
metrics: Dictionary of backtest metric values (MAE, RMSE, MAPE, R2)
|
| 252 |
+
|
| 253 |
+
Returns:
|
| 254 |
+
Dash component card
|
| 255 |
+
"""
|
| 256 |
+
import dash_bootstrap_components as dbc
|
| 257 |
+
from dash import html
|
| 258 |
+
|
| 259 |
+
return dbc.Card([
|
| 260 |
+
dbc.CardHeader([
|
| 261 |
+
html.I(className="fas fa-chart-bar me-2"),
|
| 262 |
+
html.Span("Backtest Performance Metrics", className="fw-bold")
|
| 263 |
+
]),
|
| 264 |
+
dbc.CardBody([
|
| 265 |
+
html.P("Model performance on historical data validation:", className="text-muted small mb-3"),
|
| 266 |
+
dbc.Row([
|
| 267 |
+
dbc.Col([
|
| 268 |
+
html.Small("MAE", className="text-muted"),
|
| 269 |
+
html.H5(f"{metrics.get('MAE', 0):.2f}", className="mb-0")
|
| 270 |
+
], md=3),
|
| 271 |
+
dbc.Col([
|
| 272 |
+
html.Small("RMSE", className="text-muted"),
|
| 273 |
+
html.H5(f"{metrics.get('RMSE', 0):.2f}", className="mb-0")
|
| 274 |
+
], md=3),
|
| 275 |
+
dbc.Col([
|
| 276 |
+
html.Small("MAPE", className="text-muted"),
|
| 277 |
+
html.H5(f"{metrics.get('MAPE', 0):.2f}%", className="mb-0")
|
| 278 |
+
], md=3),
|
| 279 |
+
dbc.Col([
|
| 280 |
+
html.Small("R²", className="text-muted"),
|
| 281 |
+
html.H5(f"{metrics.get('R2', 0):.4f}", className="mb-0")
|
| 282 |
+
], md=3),
|
| 283 |
+
]),
|
| 284 |
+
html.Hr(),
|
| 285 |
+
html.Small([
|
| 286 |
+
html.I(className="fas fa-info-circle me-1"),
|
| 287 |
+
"Lower MAE/RMSE/MAPE and higher R² (closer to 1.0) indicate better model performance"
|
| 288 |
+
], className="text-muted")
|
| 289 |
+
])
|
| 290 |
+
], className="mt-3")
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
def decimate_data(df: pd.DataFrame, max_points: int = 10000) -> pd.DataFrame:
|
| 294 |
+
"""
|
| 295 |
+
Reduce number of data points for visualization
|
| 296 |
+
|
| 297 |
+
Args:
|
| 298 |
+
df: Input DataFrame
|
| 299 |
+
max_points: Maximum number of points to keep
|
| 300 |
+
|
| 301 |
+
Returns:
|
| 302 |
+
Decimated DataFrame
|
| 303 |
+
"""
|
| 304 |
+
if len(df) <= max_points:
|
| 305 |
+
return df
|
| 306 |
+
|
| 307 |
+
# Use systematic sampling
|
| 308 |
+
step = len(df) // max_points
|
| 309 |
+
return df.iloc[::step].reset_index(drop=True)
|
components/controls.py
ADDED
|
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Control components for forecast parameters
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import dash
|
| 6 |
+
from dash import dcc, html
|
| 7 |
+
import dash_bootstrap_components as dbc
|
| 8 |
+
from config.constants import FORECAST_HORIZONS, CONFIDENCE_LEVELS
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def create_forecast_controls():
|
| 12 |
+
"""
|
| 13 |
+
Create forecast parameter controls
|
| 14 |
+
|
| 15 |
+
Returns:
|
| 16 |
+
Dash component
|
| 17 |
+
"""
|
| 18 |
+
return dbc.Card([
|
| 19 |
+
dbc.CardHeader(html.H5("Forecasting Parameters", className="mb-0")),
|
| 20 |
+
dbc.CardBody([
|
| 21 |
+
# Forecast Horizon Slider
|
| 22 |
+
html.Label("Forecast Horizon (Days)", className="fw-bold"),
|
| 23 |
+
dcc.Slider(
|
| 24 |
+
id='horizon-slider',
|
| 25 |
+
min=1,
|
| 26 |
+
max=365,
|
| 27 |
+
step=1,
|
| 28 |
+
value=30,
|
| 29 |
+
marks={
|
| 30 |
+
1: '1D',
|
| 31 |
+
7: '1W',
|
| 32 |
+
30: '1M',
|
| 33 |
+
90: '3M',
|
| 34 |
+
180: '6M',
|
| 35 |
+
365: '1Y'
|
| 36 |
+
},
|
| 37 |
+
tooltip={"placement": "bottom", "always_visible": True},
|
| 38 |
+
className='mb-4'
|
| 39 |
+
),
|
| 40 |
+
|
| 41 |
+
# Confidence Levels
|
| 42 |
+
html.Label("Confidence Levels", className="fw-bold mt-3"),
|
| 43 |
+
dbc.Checklist(
|
| 44 |
+
id='confidence-checklist',
|
| 45 |
+
options=[
|
| 46 |
+
{'label': '80%', 'value': 80},
|
| 47 |
+
{'label': '90%', 'value': 90},
|
| 48 |
+
{'label': '95%', 'value': 95},
|
| 49 |
+
{'label': '99%', 'value': 99},
|
| 50 |
+
],
|
| 51 |
+
value=[80, 95],
|
| 52 |
+
inline=True,
|
| 53 |
+
className='mb-4'
|
| 54 |
+
),
|
| 55 |
+
|
| 56 |
+
# Backtesting Section
|
| 57 |
+
html.Hr(),
|
| 58 |
+
html.Label("Model Performance Validation", className="fw-bold mt-3"),
|
| 59 |
+
dbc.Checklist(
|
| 60 |
+
id='backtest-enable',
|
| 61 |
+
options=[
|
| 62 |
+
{'label': ' Enable backtesting (show model performance on historical data)', 'value': 'enabled'}
|
| 63 |
+
],
|
| 64 |
+
value=[],
|
| 65 |
+
className='mb-3'
|
| 66 |
+
),
|
| 67 |
+
|
| 68 |
+
# Backtest Size Slider (only visible when backtest is enabled)
|
| 69 |
+
html.Div([
|
| 70 |
+
html.Label("Backtest Period (Days)", className="fw-bold"),
|
| 71 |
+
html.Small(" - Amount of historical data to use for validation", className="text-muted"),
|
| 72 |
+
dcc.Slider(
|
| 73 |
+
id='backtest-size-slider',
|
| 74 |
+
min=5,
|
| 75 |
+
max=180,
|
| 76 |
+
step=5,
|
| 77 |
+
value=30,
|
| 78 |
+
marks={
|
| 79 |
+
5: '5D',
|
| 80 |
+
30: '1M',
|
| 81 |
+
60: '2M',
|
| 82 |
+
90: '3M',
|
| 83 |
+
180: '6M'
|
| 84 |
+
},
|
| 85 |
+
tooltip={"placement": "bottom", "always_visible": True},
|
| 86 |
+
className='mb-3'
|
| 87 |
+
),
|
| 88 |
+
], id='backtest-controls', style={'display': 'none'}),
|
| 89 |
+
|
| 90 |
+
# Generate Button
|
| 91 |
+
dbc.Button(
|
| 92 |
+
[
|
| 93 |
+
html.I(className="fas fa-chart-line me-2"),
|
| 94 |
+
"Generate Forecast"
|
| 95 |
+
],
|
| 96 |
+
id='generate-forecast-btn',
|
| 97 |
+
color='primary',
|
| 98 |
+
size='lg',
|
| 99 |
+
className='w-100 mt-3',
|
| 100 |
+
disabled=True
|
| 101 |
+
),
|
| 102 |
+
|
| 103 |
+
# Loading indicator
|
| 104 |
+
dcc.Loading(
|
| 105 |
+
id="loading-forecast",
|
| 106 |
+
type="default",
|
| 107 |
+
children=html.Div(id="loading-output")
|
| 108 |
+
)
|
| 109 |
+
])
|
| 110 |
+
], className='mb-4')
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def create_model_status_bar(status: str = 'loading'):
|
| 114 |
+
"""
|
| 115 |
+
Create model status indicator
|
| 116 |
+
|
| 117 |
+
Args:
|
| 118 |
+
status: 'loading', 'ready', 'error'
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
Dash component
|
| 122 |
+
"""
|
| 123 |
+
if status == 'loading':
|
| 124 |
+
return dbc.Alert([
|
| 125 |
+
dbc.Spinner(size="sm", className="me-2"),
|
| 126 |
+
html.Span("Loading Chronos 2 model...")
|
| 127 |
+
], color='info', className='mb-4')
|
| 128 |
+
elif status == 'ready':
|
| 129 |
+
return dbc.Alert([
|
| 130 |
+
html.I(className="fas fa-check-circle me-2"),
|
| 131 |
+
html.Span("Model loaded and ready")
|
| 132 |
+
], color='success', className='mb-4', dismissable=True)
|
| 133 |
+
elif status == 'error':
|
| 134 |
+
return dbc.Alert([
|
| 135 |
+
html.I(className="fas fa-exclamation-circle me-2"),
|
| 136 |
+
html.Span("Failed to load model. Please check logs.")
|
| 137 |
+
], color='danger', className='mb-4')
|
| 138 |
+
else:
|
| 139 |
+
return html.Div()
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def create_results_section():
|
| 143 |
+
"""
|
| 144 |
+
Create the results visualization section
|
| 145 |
+
|
| 146 |
+
Returns:
|
| 147 |
+
Dash component
|
| 148 |
+
"""
|
| 149 |
+
return dbc.Card([
|
| 150 |
+
dbc.CardHeader(html.H5("Forecast Results", className="mb-0")),
|
| 151 |
+
dbc.CardBody([
|
| 152 |
+
# Chart container
|
| 153 |
+
dcc.Graph(
|
| 154 |
+
id='forecast-chart',
|
| 155 |
+
config=create_chart_config(),
|
| 156 |
+
style={'height': '600px'}
|
| 157 |
+
),
|
| 158 |
+
|
| 159 |
+
# Metrics row
|
| 160 |
+
html.Div(id='metrics-display', className='mt-4')
|
| 161 |
+
])
|
| 162 |
+
], className='mb-4', id='results-card', style={'display': 'none'})
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def create_chart_config():
|
| 166 |
+
"""
|
| 167 |
+
Create Plotly chart configuration
|
| 168 |
+
|
| 169 |
+
Returns:
|
| 170 |
+
Configuration dictionary
|
| 171 |
+
"""
|
| 172 |
+
from config.constants import CHART_CONFIG
|
| 173 |
+
return CHART_CONFIG
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def create_app_header():
|
| 177 |
+
"""
|
| 178 |
+
Create application header
|
| 179 |
+
|
| 180 |
+
Returns:
|
| 181 |
+
Dash component
|
| 182 |
+
"""
|
| 183 |
+
from config.settings import APP_METADATA
|
| 184 |
+
|
| 185 |
+
return dbc.Navbar(
|
| 186 |
+
dbc.Container([
|
| 187 |
+
dbc.Row([
|
| 188 |
+
dbc.Col([
|
| 189 |
+
html.Div([
|
| 190 |
+
html.H2(APP_METADATA['title'], className="mb-0 text-white"),
|
| 191 |
+
html.P(APP_METADATA['subtitle'], className="mb-0 text-white-50 small")
|
| 192 |
+
])
|
| 193 |
+
])
|
| 194 |
+
], align="center", className="g-0 w-100")
|
| 195 |
+
], fluid=True),
|
| 196 |
+
color="primary",
|
| 197 |
+
dark=True,
|
| 198 |
+
className="mb-4"
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
def create_footer():
|
| 203 |
+
"""
|
| 204 |
+
Create application footer
|
| 205 |
+
|
| 206 |
+
Returns:
|
| 207 |
+
Dash component
|
| 208 |
+
"""
|
| 209 |
+
from config.settings import APP_METADATA
|
| 210 |
+
|
| 211 |
+
return html.Footer([
|
| 212 |
+
html.Hr(),
|
| 213 |
+
dbc.Container([
|
| 214 |
+
dbc.Row([
|
| 215 |
+
dbc.Col([
|
| 216 |
+
html.Div([
|
| 217 |
+
html.P([
|
| 218 |
+
"Created by ",
|
| 219 |
+
html.A([
|
| 220 |
+
html.I(className="fab fa-linkedin me-1"),
|
| 221 |
+
"Abhay Pratap Singh"
|
| 222 |
+
],
|
| 223 |
+
href="https://www.linkedin.com/in/mindful-abhay/",
|
| 224 |
+
target="_blank",
|
| 225 |
+
className="text-primary fw-bold",
|
| 226 |
+
style={'textDecoration': 'none'}
|
| 227 |
+
)
|
| 228 |
+
], className="text-center mb-2"),
|
| 229 |
+
html.P([
|
| 230 |
+
html.A([
|
| 231 |
+
html.I(className="fas fa-coffee me-2"),
|
| 232 |
+
"Buy me a coffee"
|
| 233 |
+
],
|
| 234 |
+
href="https://buymeacoffee.com/abhaypratapsingh",
|
| 235 |
+
target="_blank",
|
| 236 |
+
className="btn btn-outline-warning btn-sm"
|
| 237 |
+
)
|
| 238 |
+
], className="text-center mb-2"),
|
| 239 |
+
html.P([
|
| 240 |
+
f"Version {APP_METADATA['version']}"
|
| 241 |
+
], className="text-center text-muted small mb-0")
|
| 242 |
+
])
|
| 243 |
+
])
|
| 244 |
+
])
|
| 245 |
+
])
|
| 246 |
+
], className="mt-5 mb-3")
|
| 247 |
+
|
| 248 |
+
|
| 249 |
+
def create_progress_indicator(progress: int, message: str = "Processing..."):
|
| 250 |
+
"""
|
| 251 |
+
Create a progress indicator
|
| 252 |
+
|
| 253 |
+
Args:
|
| 254 |
+
progress: Progress percentage (0-100)
|
| 255 |
+
message: Progress message
|
| 256 |
+
|
| 257 |
+
Returns:
|
| 258 |
+
Dash component
|
| 259 |
+
"""
|
| 260 |
+
return dbc.Card([
|
| 261 |
+
dbc.CardBody([
|
| 262 |
+
html.H6(message, className="mb-3"),
|
| 263 |
+
dbc.Progress(value=progress, striped=True, animated=True)
|
| 264 |
+
])
|
| 265 |
+
])
|
components/upload.py
ADDED
|
@@ -0,0 +1,347 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
File upload component
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import dash
|
| 6 |
+
from dash import dcc, html
|
| 7 |
+
import dash_bootstrap_components as dbc
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def create_upload_component():
|
| 11 |
+
"""
|
| 12 |
+
Create the file upload component with drag-and-drop
|
| 13 |
+
|
| 14 |
+
Returns:
|
| 15 |
+
Dash component
|
| 16 |
+
"""
|
| 17 |
+
return dbc.Card([
|
| 18 |
+
dbc.CardHeader(html.H5("Data Input", className="mb-0")),
|
| 19 |
+
dbc.CardBody([
|
| 20 |
+
dcc.Upload(
|
| 21 |
+
id='upload-data',
|
| 22 |
+
children=html.Div([
|
| 23 |
+
html.I(className="fas fa-cloud-upload-alt fa-3x mb-3"),
|
| 24 |
+
html.H5('Drag and Drop or Click to Select File'),
|
| 25 |
+
html.P('Supported formats: CSV, Excel (max 100MB)', className='text-muted')
|
| 26 |
+
]),
|
| 27 |
+
style={
|
| 28 |
+
'width': '100%',
|
| 29 |
+
'height': '150px',
|
| 30 |
+
'lineHeight': '150px',
|
| 31 |
+
'borderWidth': '2px',
|
| 32 |
+
'borderStyle': 'dashed',
|
| 33 |
+
'borderRadius': '10px',
|
| 34 |
+
'textAlign': 'center',
|
| 35 |
+
'backgroundColor': '#f8f9fa'
|
| 36 |
+
},
|
| 37 |
+
multiple=False
|
| 38 |
+
),
|
| 39 |
+
html.Div(id='upload-status', className='mt-3'),
|
| 40 |
+
])
|
| 41 |
+
], className='mb-4')
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def create_column_selector():
|
| 45 |
+
"""
|
| 46 |
+
Create column mapping dropdowns with support for multivariate and covariate-informed forecasting
|
| 47 |
+
|
| 48 |
+
Returns:
|
| 49 |
+
Dash component
|
| 50 |
+
"""
|
| 51 |
+
return dbc.Card([
|
| 52 |
+
dbc.CardHeader(html.H5("Data Configuration", className="mb-0")),
|
| 53 |
+
dbc.CardBody([
|
| 54 |
+
# Forecasting Mode Selector
|
| 55 |
+
dbc.Row([
|
| 56 |
+
dbc.Col([
|
| 57 |
+
dbc.Label("Forecasting Mode", className="fw-bold"),
|
| 58 |
+
dcc.RadioItems(
|
| 59 |
+
id='forecasting-mode',
|
| 60 |
+
options=[
|
| 61 |
+
{'label': ' Univariate (Single target)', 'value': 'univariate'},
|
| 62 |
+
{'label': ' Multivariate (Multiple targets)', 'value': 'multivariate'},
|
| 63 |
+
{'label': ' Covariate-informed (With external variables)', 'value': 'covariate'}
|
| 64 |
+
],
|
| 65 |
+
value='univariate',
|
| 66 |
+
className='mt-2',
|
| 67 |
+
labelStyle={'display': 'block', 'marginBottom': '8px'}
|
| 68 |
+
),
|
| 69 |
+
html.Small("Chronos-2 supports all three modes with zero-shot learning",
|
| 70 |
+
className='text-muted')
|
| 71 |
+
], md=12),
|
| 72 |
+
], className='mb-3'),
|
| 73 |
+
|
| 74 |
+
html.Hr(),
|
| 75 |
+
|
| 76 |
+
# Column Selection
|
| 77 |
+
dbc.Row([
|
| 78 |
+
dbc.Col([
|
| 79 |
+
dbc.Label("Date/Timestamp Column"),
|
| 80 |
+
dcc.Dropdown(
|
| 81 |
+
id='date-column-dropdown',
|
| 82 |
+
placeholder='Select date column...',
|
| 83 |
+
clearable=False
|
| 84 |
+
)
|
| 85 |
+
], md=4),
|
| 86 |
+
dbc.Col([
|
| 87 |
+
dbc.Label("Target Variable(s)"),
|
| 88 |
+
dcc.Dropdown(
|
| 89 |
+
id='target-column-dropdown',
|
| 90 |
+
placeholder='Select target column(s)...',
|
| 91 |
+
clearable=False,
|
| 92 |
+
multi=True # Enable multi-select
|
| 93 |
+
),
|
| 94 |
+
html.Small(id='target-help-text', className='text-muted')
|
| 95 |
+
], md=4),
|
| 96 |
+
dbc.Col([
|
| 97 |
+
dbc.Label("ID Column (Optional)"),
|
| 98 |
+
dcc.Dropdown(
|
| 99 |
+
id='id-column-dropdown',
|
| 100 |
+
placeholder='Select ID column (optional)...',
|
| 101 |
+
clearable=True
|
| 102 |
+
),
|
| 103 |
+
html.Small("For multiple time series", className='text-muted')
|
| 104 |
+
], md=4),
|
| 105 |
+
], className='mb-3'),
|
| 106 |
+
|
| 107 |
+
# Covariate Selection (shown only for covariate-informed mode)
|
| 108 |
+
html.Div([
|
| 109 |
+
dbc.Row([
|
| 110 |
+
dbc.Col([
|
| 111 |
+
dbc.Label("Covariate Columns"),
|
| 112 |
+
dcc.Dropdown(
|
| 113 |
+
id='covariate-columns-dropdown',
|
| 114 |
+
placeholder='Select covariate column(s)...',
|
| 115 |
+
clearable=True,
|
| 116 |
+
multi=True
|
| 117 |
+
),
|
| 118 |
+
html.Small("External variables that may influence the forecast",
|
| 119 |
+
className='text-muted')
|
| 120 |
+
], md=12),
|
| 121 |
+
], className='mb-3'),
|
| 122 |
+
], id='covariate-section', style={'display': 'none'}),
|
| 123 |
+
|
| 124 |
+
html.Hr(),
|
| 125 |
+
html.Div(id='data-preview-container', className='mt-3'),
|
| 126 |
+
html.Div(id='data-quality-report', className='mt-3')
|
| 127 |
+
])
|
| 128 |
+
], className='mb-4', id='column-selector-card', style={'display': 'none'})
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def create_sample_data_loader():
|
| 132 |
+
"""
|
| 133 |
+
Create sample data loader component
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
Dash component
|
| 137 |
+
"""
|
| 138 |
+
return dbc.Card([
|
| 139 |
+
dbc.CardBody([
|
| 140 |
+
html.H6("Quick Start with Sample Data"),
|
| 141 |
+
dbc.Row([
|
| 142 |
+
dbc.Col([
|
| 143 |
+
dbc.Button(
|
| 144 |
+
"Weather Stations",
|
| 145 |
+
id='load-weather',
|
| 146 |
+
color='outline-primary',
|
| 147 |
+
size='sm',
|
| 148 |
+
className='w-100 mb-2'
|
| 149 |
+
),
|
| 150 |
+
], md=4),
|
| 151 |
+
dbc.Col([
|
| 152 |
+
dbc.Button(
|
| 153 |
+
"Air Quality UCI",
|
| 154 |
+
id='load-airquality',
|
| 155 |
+
color='outline-primary',
|
| 156 |
+
size='sm',
|
| 157 |
+
className='w-100 mb-2'
|
| 158 |
+
),
|
| 159 |
+
], md=4),
|
| 160 |
+
dbc.Col([
|
| 161 |
+
dbc.Button(
|
| 162 |
+
"Bitcoin Price",
|
| 163 |
+
id='load-bitcoin',
|
| 164 |
+
color='outline-primary',
|
| 165 |
+
size='sm',
|
| 166 |
+
className='w-100 mb-2'
|
| 167 |
+
),
|
| 168 |
+
], md=4),
|
| 169 |
+
]),
|
| 170 |
+
dbc.Row([
|
| 171 |
+
dbc.Col([
|
| 172 |
+
dbc.Button(
|
| 173 |
+
"S&P 500 Stock",
|
| 174 |
+
id='load-stock',
|
| 175 |
+
color='outline-primary',
|
| 176 |
+
size='sm',
|
| 177 |
+
className='w-100 mb-2'
|
| 178 |
+
),
|
| 179 |
+
], md=4),
|
| 180 |
+
dbc.Col([
|
| 181 |
+
dbc.Button(
|
| 182 |
+
"Traffic Speeds",
|
| 183 |
+
id='load-traffic',
|
| 184 |
+
color='outline-primary',
|
| 185 |
+
size='sm',
|
| 186 |
+
className='w-100 mb-2'
|
| 187 |
+
),
|
| 188 |
+
], md=4),
|
| 189 |
+
dbc.Col([
|
| 190 |
+
dbc.Button(
|
| 191 |
+
"Electricity Consumption",
|
| 192 |
+
id='load-electricity',
|
| 193 |
+
color='outline-primary',
|
| 194 |
+
size='sm',
|
| 195 |
+
className='w-100 mb-2'
|
| 196 |
+
),
|
| 197 |
+
], md=4),
|
| 198 |
+
]),
|
| 199 |
+
])
|
| 200 |
+
], className='mb-4')
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
def format_upload_status(status: str, message: str, is_error: bool = False):
|
| 204 |
+
"""
|
| 205 |
+
Format upload status message
|
| 206 |
+
|
| 207 |
+
Args:
|
| 208 |
+
status: Status type ('success', 'error', 'info')
|
| 209 |
+
message: Message to display
|
| 210 |
+
is_error: Whether this is an error message
|
| 211 |
+
|
| 212 |
+
Returns:
|
| 213 |
+
Dash component
|
| 214 |
+
"""
|
| 215 |
+
if is_error or status == 'error':
|
| 216 |
+
return dbc.Alert([
|
| 217 |
+
html.I(className="fas fa-exclamation-circle me-2"),
|
| 218 |
+
message
|
| 219 |
+
], color='danger', dismissable=True)
|
| 220 |
+
elif status == 'success':
|
| 221 |
+
return dbc.Alert([
|
| 222 |
+
html.I(className="fas fa-check-circle me-2"),
|
| 223 |
+
message
|
| 224 |
+
], color='success', dismissable=True)
|
| 225 |
+
elif status == 'warning':
|
| 226 |
+
return dbc.Alert([
|
| 227 |
+
html.I(className="fas fa-exclamation-triangle me-2"),
|
| 228 |
+
message
|
| 229 |
+
], color='warning', dismissable=True)
|
| 230 |
+
else:
|
| 231 |
+
return dbc.Alert([
|
| 232 |
+
html.I(className="fas fa-info-circle me-2"),
|
| 233 |
+
message
|
| 234 |
+
], color='info', dismissable=True)
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def create_data_preview_table(df, n_rows=10):
|
| 238 |
+
"""
|
| 239 |
+
Create a data preview table
|
| 240 |
+
|
| 241 |
+
Args:
|
| 242 |
+
df: DataFrame to preview
|
| 243 |
+
n_rows: Number of rows to show
|
| 244 |
+
|
| 245 |
+
Returns:
|
| 246 |
+
Dash component
|
| 247 |
+
"""
|
| 248 |
+
if df is None or df.empty:
|
| 249 |
+
return html.Div()
|
| 250 |
+
|
| 251 |
+
return html.Div([
|
| 252 |
+
html.H6("Data Preview"),
|
| 253 |
+
dbc.Table.from_dataframe(
|
| 254 |
+
df.head(n_rows),
|
| 255 |
+
striped=True,
|
| 256 |
+
bordered=True,
|
| 257 |
+
hover=True,
|
| 258 |
+
responsive=True,
|
| 259 |
+
size='sm'
|
| 260 |
+
),
|
| 261 |
+
html.P(
|
| 262 |
+
f"Showing first {min(n_rows, len(df))} of {len(df)} rows",
|
| 263 |
+
className='text-muted small'
|
| 264 |
+
)
|
| 265 |
+
])
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def create_quality_report(report: dict):
|
| 269 |
+
"""
|
| 270 |
+
Create a data quality report display
|
| 271 |
+
|
| 272 |
+
Args:
|
| 273 |
+
report: Quality report dictionary
|
| 274 |
+
|
| 275 |
+
Returns:
|
| 276 |
+
Dash component
|
| 277 |
+
"""
|
| 278 |
+
if not report:
|
| 279 |
+
return html.Div()
|
| 280 |
+
|
| 281 |
+
# Build warning messages if needed
|
| 282 |
+
warnings = []
|
| 283 |
+
if report.get('sampled', False):
|
| 284 |
+
warnings.append(
|
| 285 |
+
dbc.Alert(
|
| 286 |
+
f"⚠️ Large dataset detected: Sampled from {report.get('original_points', 0):,} to {report.get('total_points', 0):,} rows (most recent data retained)",
|
| 287 |
+
color="warning",
|
| 288 |
+
className="mb-2"
|
| 289 |
+
)
|
| 290 |
+
)
|
| 291 |
+
if report.get('duplicates_removed', 0) > 0:
|
| 292 |
+
warnings.append(
|
| 293 |
+
dbc.Alert(
|
| 294 |
+
f"⚠️ Removed {report.get('duplicates_removed', 0):,} duplicate timestamps",
|
| 295 |
+
color="info",
|
| 296 |
+
className="mb-2"
|
| 297 |
+
)
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
return dbc.Card([
|
| 301 |
+
dbc.CardHeader(html.H6("Data Quality Report", className="mb-0")),
|
| 302 |
+
dbc.CardBody([
|
| 303 |
+
html.Div(warnings) if warnings else None,
|
| 304 |
+
dbc.Row([
|
| 305 |
+
dbc.Col([
|
| 306 |
+
html.Small("Total Points", className='text-muted'),
|
| 307 |
+
html.H6(f"{report.get('total_points', 0):,}")
|
| 308 |
+
], md=3),
|
| 309 |
+
dbc.Col([
|
| 310 |
+
html.Small("Date Range", className='text-muted'),
|
| 311 |
+
html.H6(f"{report.get('date_range', {}).get('start', 'N/A')} to {report.get('date_range', {}).get('end', 'N/A')}",
|
| 312 |
+
style={'fontSize': '0.9rem'})
|
| 313 |
+
], md=3),
|
| 314 |
+
dbc.Col([
|
| 315 |
+
html.Small("Frequency", className='text-muted'),
|
| 316 |
+
html.H6(report.get('frequency', 'Unknown'))
|
| 317 |
+
], md=2),
|
| 318 |
+
dbc.Col([
|
| 319 |
+
html.Small("Missing Filled", className='text-muted'),
|
| 320 |
+
html.H6(str(report.get('missing_filled', 0)))
|
| 321 |
+
], md=2),
|
| 322 |
+
dbc.Col([
|
| 323 |
+
html.Small("Outliers", className='text-muted'),
|
| 324 |
+
html.H6(str(report.get('outliers_detected', 0)))
|
| 325 |
+
], md=2),
|
| 326 |
+
]),
|
| 327 |
+
html.Hr(),
|
| 328 |
+
dbc.Row([
|
| 329 |
+
dbc.Col([
|
| 330 |
+
html.Small("Mean", className='text-muted'),
|
| 331 |
+
html.P(f"{report.get('statistics', {}).get('mean', 0):.2f}")
|
| 332 |
+
], md=3),
|
| 333 |
+
dbc.Col([
|
| 334 |
+
html.Small("Std Dev", className='text-muted'),
|
| 335 |
+
html.P(f"{report.get('statistics', {}).get('std', 0):.2f}")
|
| 336 |
+
], md=3),
|
| 337 |
+
dbc.Col([
|
| 338 |
+
html.Small("Min", className='text-muted'),
|
| 339 |
+
html.P(f"{report.get('statistics', {}).get('min', 0):.2f}")
|
| 340 |
+
], md=3),
|
| 341 |
+
dbc.Col([
|
| 342 |
+
html.Small("Max", className='text-muted'),
|
| 343 |
+
html.P(f"{report.get('statistics', {}).get('max', 0):.2f}")
|
| 344 |
+
], md=3),
|
| 345 |
+
])
|
| 346 |
+
])
|
| 347 |
+
], className='mt-3')
|