Spaces:
Runtime error
Runtime error
| import math | |
| import os | |
| from io import BytesIO | |
| import gradio as gr | |
| import cv2 | |
| import requests | |
| from pydub import AudioSegment | |
| from faster_whisper import WhisperModel | |
| theme = gr.themes.Base( | |
| primary_hue="cyan", | |
| secondary_hue="blue", | |
| neutral_hue="slate", | |
| ) | |
| model = WhisperModel("small", device="cpu", compute_type="int8") | |
| API_KEY = os.getenv("API_KEY") | |
| FACE_API_URL = "https://api-inference.huggingface.co/models/dima806/facial_emotions_image_detection" | |
| TEXT_API_URL = "https://api-inference.huggingface.co/models/SamLowe/roberta-base-go_emotions" | |
| headers = {"Authorization": "Bearer " + API_KEY + ""} | |
| result = [] | |
| def extract_frames(video_path): | |
| cap = cv2.VideoCapture(video_path) | |
| fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
| total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| interval = fps | |
| images = [] | |
| for i in range(0, total_frames, interval): | |
| cap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
| ret, frame = cap.read() | |
| if ret: | |
| _, img_encoded = cv2.imencode('.jpg', frame) | |
| img_bytes = img_encoded.tobytes() | |
| response = requests.post(FACE_API_URL, headers=headers, data=img_bytes) | |
| temp = {item['label']: item['score'] for item in response.json()} | |
| result.append(temp) | |
| images.append((cv2.cvtColor(frame, cv2.COLOR_BGR2RGB), f"Sentiments: {temp}")) | |
| print("Frame extraction completed.") | |
| cap.release() | |
| return images, result | |
| def analyze_sentiment(text): | |
| response = requests.post(TEXT_API_URL, headers=headers, json=text) | |
| sentiment_list = response.json()[0] | |
| sentiment_results = {results['label']: results['score'] for results in sentiment_list} | |
| return sentiment_results | |
| def video_to_audio(input_video): | |
| cap = cv2.VideoCapture(input_video) | |
| fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
| audio = AudioSegment.from_file(input_video) | |
| audio_binary = audio.export(format="wav").read() | |
| audio_bytesio = BytesIO(audio_binary) | |
| segments, info = model.transcribe(audio_bytesio, beam_size=5) | |
| print("Detected language '%s' with probability %f" % (info.language, info.language_probability)) | |
| frames_images, frames_sentiments = extract_frames(input_video) | |
| transcript = '' | |
| audio_divide_sentiment = '' | |
| video_sentiment_markdown = '' | |
| video_sentiment_final = [] | |
| final_output = [] | |
| for segment in segments: | |
| transcript = transcript + segment.text + " " | |
| transcript_segment_sentiment = analyze_sentiment(segment.text) | |
| audio_divide_sentiment += "[%.2fs -> %.2fs] %s : %s`\`" % (segment.start, segment.end, segment.text, transcript_segment_sentiment) | |
| emotion_totals = { | |
| 'admiration': 0.0, | |
| 'amusement': 0.0, | |
| 'angry': 0.0, | |
| 'annoyance': 0.0, | |
| 'approval': 0.0, | |
| 'caring': 0.0, | |
| 'confusion': 0.0, | |
| 'curiosity': 0.0, | |
| 'desire': 0.0, | |
| 'disappointment': 0.0, | |
| 'disapproval': 0.0, | |
| 'disgust': 0.0, | |
| 'embarrassment': 0.0, | |
| 'excitement': 0.0, | |
| 'fear': 0.0, | |
| 'gratitude': 0.0, | |
| 'grief': 0.0, | |
| 'happy': 0.0, | |
| 'love': 0.0, | |
| 'nervousness': 0.0, | |
| 'optimism': 0.0, | |
| 'pride': 0.0, | |
| 'realization': 0.0, | |
| 'relief': 0.0, | |
| 'remorse': 0.0, | |
| 'sad': 0.0, | |
| 'surprise': 0.0, | |
| 'neutral': 0.0 | |
| } | |
| counter = 0 | |
| for i in range(math.ceil(segment.start), math.floor(segment.end)): | |
| for emotion in frames_sentiments[i].keys(): | |
| emotion_totals[emotion] += frames_sentiments[i].get(emotion) | |
| counter += 1 | |
| for emotion in emotion_totals: | |
| emotion_totals[emotion] /= counter | |
| video_sentiment_final.append(emotion_totals) | |
| video_segment_sentiment = {key: value for key, value in emotion_totals.items() if value != 0.0} | |
| video_sentiment_markdown += f"Frame {fps*math.ceil(segment.start)} - Frame {fps*math.floor(segment.end)} : {video_segment_sentiment}`\`" | |
| segment_finals = {segment.id: (segment.text, segment.start, segment.end, transcript_segment_sentiment, video_segment_sentiment)} | |
| final_output.append(segment_finals) | |
| total_transcript_sentiment = {key: value for key, value in analyze_sentiment(transcript).items() if value >= 0.01} | |
| emotion_finals = { | |
| 'admiration': 0.0, | |
| 'amusement': 0.0, | |
| 'angry': 0.0, | |
| 'annoyance': 0.0, | |
| 'approval': 0.0, | |
| 'caring': 0.0, | |
| 'confusion': 0.0, | |
| 'curiosity': 0.0, | |
| 'desire': 0.0, | |
| 'disappointment': 0.0, | |
| 'disapproval': 0.0, | |
| 'disgust': 0.0, | |
| 'embarrassment': 0.0, | |
| 'excitement': 0.0, | |
| 'fear': 0.0, | |
| 'gratitude': 0.0, | |
| 'grief': 0.0, | |
| 'happy': 0.0, | |
| 'love': 0.0, | |
| 'nervousness': 0.0, | |
| 'optimism': 0.0, | |
| 'pride': 0.0, | |
| 'realization': 0.0, | |
| 'relief': 0.0, | |
| 'remorse': 0.0, | |
| 'sad': 0.0, | |
| 'surprise': 0.0, | |
| 'neutral': 0.0 | |
| } | |
| for i in range(0, video_sentiment_final.__len__()-1): | |
| for emotion in video_sentiment_final[i].keys(): | |
| emotion_finals[emotion] += video_sentiment_final[i].get(emotion) | |
| for emotion in emotion_finals: | |
| emotion_finals[emotion] /= video_sentiment_final.__len__() | |
| emotion_finals = {key: value for key, value in emotion_finals.items() if value != 0.0} | |
| print("Processing Completed!!") | |
| return str(final_output), frames_images, total_transcript_sentiment, audio_divide_sentiment, video_sentiment_markdown, emotion_finals | |
| with gr.Blocks(theme=theme, css=".gradio-container { background: rgba(255, 255, 255, 0.2) !important; box-shadow: 0 8px 32px 0 rgba( 31, 38, 135, 0.37 ) !important; backdrop-filter: blur( 10px ) !important; -webkit-backdrop-filter: blur( 10px ) !important; border-radius: 10px !important; border: 1px solid rgba( 0, 0, 0, 0.5 ) !important;}") as Video: | |
| with gr.Column(): | |
| gr.Markdown("""# Cross Model Machine Learning Model""") | |
| with gr.Row(): | |
| gr.Markdown(""" | |
| ### π€ A cross-model ML model for video processing in healthcare sentiment analysis involves combining different machine learning models to analyze sentiments expressed in healthcare-related videos. | |
| - Facial Expression Recognition Model [Google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) ππ’π° | |
| - Speech Recognition Model [OpenAI/Whisper](https://github.com/openai/whisper) π£οΈπ€ | |
| - Text Analysis Model [RoBERTa-base-go-emotions](https://huggingface.co/SamLowe/roberta-base-go_emotions) ππ | |
| - Contextual Understanding Model (Sentiment Analysis) ππ | |
| """) | |
| gr.Markdown("""### By combining the outputs of these models, the cross-model approach aims to capture a more comprehensive view of the sentiment within the healthcare-related video. This way, healthcare providers can gain insights into patient experiences and emotions, facilitating better understanding and improvements in healthcare services. π©ββοΈππ¨ββοΈ """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_video = gr.Video(sources=["upload", "webcam"]) | |
| button = gr.Button("Process", variant="primary") | |
| gr.Examples(inputs=input_video, examples=[os.path.join(os.path.dirname(__file__), "test_video_1.mp4")]) | |
| with gr.Row(): | |
| overall_score = gr.Label(label="Overall Score") | |
| video_sentiment_final = gr.Label(label="Video Sentiment Score") | |
| with gr.Column(): | |
| frames_gallery = gr.Gallery(label="Video Frames", show_label=True, elem_id="gallery", columns=[3], rows=[1], object_fit="contain", height="auto") | |
| with gr.Accordion(label="JSON detailed Responses", open=False): | |
| json_output = gr.Textbox(label="JSON Output", info="Overall scores of the above video in segments.", show_label=True, lines=5, show_copy_button=True, interactive=False) | |
| audio_sentiment = gr.Textbox(label="Audio Sentiments", info="Outputs of Audio Processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False) | |
| video_sentiment_markdown = gr.Textbox(label="Video Sentiments", info="Outputs of Video Frames processing from the video.", show_label=True, lines=5, show_copy_button=True, interactive=False) | |
| button.click( | |
| fn=video_to_audio, | |
| inputs=input_video, | |
| outputs=[json_output, frames_gallery, overall_score, audio_sentiment, video_sentiment_markdown, video_sentiment_final] | |
| ) | |
| Video.launch() |