Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -38,6 +38,12 @@ async def load_model():
|
|
| 38 |
trust_remote_code=True
|
| 39 |
)
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 42 |
model_name,
|
| 43 |
torch_dtype=torch.float32,
|
|
@@ -60,6 +66,12 @@ async def load_model():
|
|
| 60 |
trust_remote_code=True
|
| 61 |
)
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
model = AutoModel.from_pretrained(
|
| 64 |
model_name,
|
| 65 |
torch_dtype=torch.float32,
|
|
@@ -94,6 +106,12 @@ async def load_model():
|
|
| 94 |
trust_remote_code=True
|
| 95 |
)
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
model = ModelClass.from_pretrained(
|
| 98 |
model_name,
|
| 99 |
config=config,
|
|
@@ -168,6 +186,7 @@ def extract_coordinates(text):
|
|
| 168 |
|
| 169 |
def cpu_inference(conversation, model, tokenizer, processor):
|
| 170 |
try:
|
|
|
|
| 171 |
prompt = processor.apply_chat_template(
|
| 172 |
conversation,
|
| 173 |
tokenize=False,
|
|
@@ -175,14 +194,28 @@ def cpu_inference(conversation, model, tokenizer, processor):
|
|
| 175 |
)
|
| 176 |
|
| 177 |
image = conversation[1]["content"][0]["image"]
|
|
|
|
|
|
|
| 178 |
inputs = processor(
|
| 179 |
-
text=[prompt],
|
| 180 |
-
images=[image],
|
| 181 |
return_tensors="pt",
|
| 182 |
-
padding=True,
|
| 183 |
truncation=True,
|
| 184 |
max_length=512
|
| 185 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
| 187 |
with torch.no_grad():
|
| 188 |
outputs = model.generate(
|
|
@@ -191,21 +224,28 @@ def cpu_inference(conversation, model, tokenizer, processor):
|
|
| 191 |
do_sample=True,
|
| 192 |
temperature=0.3,
|
| 193 |
top_p=0.8,
|
| 194 |
-
pad_token_id=
|
|
|
|
| 195 |
)
|
| 196 |
|
| 197 |
-
|
|
|
|
|
|
|
| 198 |
response = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 199 |
coordinates = extract_coordinates(response)
|
| 200 |
|
| 201 |
return {
|
| 202 |
"topk_points": coordinates,
|
| 203 |
-
"response": response,
|
| 204 |
"success": True
|
| 205 |
}
|
| 206 |
|
| 207 |
except Exception as e:
|
| 208 |
logger.error(f"Inference error: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
return {
|
| 210 |
"topk_points": [(0.5, 0.5)],
|
| 211 |
"response": f"Error during inference: {str(e)}",
|
|
@@ -242,9 +282,12 @@ async def predict_click_base64(data: Base64Request):
|
|
| 242 |
|
| 243 |
try:
|
| 244 |
pil_image = Image.open(BytesIO(image_data)).convert("RGB")
|
|
|
|
|
|
|
| 245 |
except Exception as e:
|
| 246 |
raise HTTPException(status_code=400, detail=f"Invalid image format: {e}")
|
| 247 |
|
|
|
|
| 248 |
conversation = [
|
| 249 |
{
|
| 250 |
"role": "system",
|
|
@@ -272,6 +315,10 @@ async def predict_click_base64(data: Base64Request):
|
|
| 272 |
|
| 273 |
# Run inference
|
| 274 |
pred = cpu_inference(conversation, model, tokenizer, processor)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 275 |
px, py = pred["topk_points"][0]
|
| 276 |
|
| 277 |
return JSONResponse(content={
|
|
@@ -285,6 +332,8 @@ async def predict_click_base64(data: Base64Request):
|
|
| 285 |
raise
|
| 286 |
except Exception as e:
|
| 287 |
logger.error(f"Prediction error: {e}")
|
|
|
|
|
|
|
| 288 |
raise HTTPException(
|
| 289 |
status_code=500,
|
| 290 |
detail=f"Internal server error: {str(e)}"
|
|
@@ -306,10 +355,23 @@ async def debug_info():
|
|
| 306 |
import transformers
|
| 307 |
available_classes = [attr for attr in dir(transformers) if 'Qwen' in attr or 'VL' in attr]
|
| 308 |
|
| 309 |
-
|
| 310 |
"model_loaded": model_loaded,
|
| 311 |
"processor_type": type(processor).__name__ if processor else None,
|
| 312 |
"model_type": type(model).__name__ if model else None,
|
| 313 |
"available_qwen_classes": available_classes,
|
| 314 |
"transformers_version": transformers.__version__
|
| 315 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
trust_remote_code=True
|
| 39 |
)
|
| 40 |
|
| 41 |
+
# Configure padding for processor
|
| 42 |
+
if hasattr(processor, 'tokenizer'):
|
| 43 |
+
processor.tokenizer.padding_side = "left" # Important for Qwen2-VL
|
| 44 |
+
if processor.tokenizer.pad_token is None:
|
| 45 |
+
processor.tokenizer.pad_token = processor.tokenizer.eos_token
|
| 46 |
+
|
| 47 |
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 48 |
model_name,
|
| 49 |
torch_dtype=torch.float32,
|
|
|
|
| 66 |
trust_remote_code=True
|
| 67 |
)
|
| 68 |
|
| 69 |
+
# Configure padding for processor
|
| 70 |
+
if hasattr(processor, 'tokenizer'):
|
| 71 |
+
processor.tokenizer.padding_side = "left"
|
| 72 |
+
if processor.tokenizer.pad_token is None:
|
| 73 |
+
processor.tokenizer.pad_token = processor.tokenizer.eos_token
|
| 74 |
+
|
| 75 |
model = AutoModel.from_pretrained(
|
| 76 |
model_name,
|
| 77 |
torch_dtype=torch.float32,
|
|
|
|
| 106 |
trust_remote_code=True
|
| 107 |
)
|
| 108 |
|
| 109 |
+
# Configure padding
|
| 110 |
+
if hasattr(processor, 'tokenizer'):
|
| 111 |
+
processor.tokenizer.padding_side = "left"
|
| 112 |
+
if processor.tokenizer.pad_token is None:
|
| 113 |
+
processor.tokenizer.pad_token = processor.tokenizer.eos_token
|
| 114 |
+
|
| 115 |
model = ModelClass.from_pretrained(
|
| 116 |
model_name,
|
| 117 |
config=config,
|
|
|
|
| 186 |
|
| 187 |
def cpu_inference(conversation, model, tokenizer, processor):
|
| 188 |
try:
|
| 189 |
+
# Apply chat template
|
| 190 |
prompt = processor.apply_chat_template(
|
| 191 |
conversation,
|
| 192 |
tokenize=False,
|
|
|
|
| 194 |
)
|
| 195 |
|
| 196 |
image = conversation[1]["content"][0]["image"]
|
| 197 |
+
|
| 198 |
+
# FIXED: Process inputs dengan padding yang benar
|
| 199 |
inputs = processor(
|
| 200 |
+
text=[prompt], # Wrap dalam list untuk batch processing
|
| 201 |
+
images=[image], # Wrap dalam list untuk batch processing
|
| 202 |
return_tensors="pt",
|
| 203 |
+
padding=True, # Enable padding
|
| 204 |
truncation=True,
|
| 205 |
max_length=512
|
| 206 |
)
|
| 207 |
+
|
| 208 |
+
# FIXED: Pastikan semua tensor memiliki batch dimension yang konsisten
|
| 209 |
+
for key, value in inputs.items():
|
| 210 |
+
if isinstance(value, torch.Tensor):
|
| 211 |
+
logger.debug(f"Input {key} shape: {value.shape}")
|
| 212 |
+
|
| 213 |
+
# FIXED: Set pad_token_id jika belum ada
|
| 214 |
+
pad_token_id = tokenizer.pad_token_id
|
| 215 |
+
if pad_token_id is None:
|
| 216 |
+
pad_token_id = tokenizer.eos_token_id
|
| 217 |
+
if pad_token_id is None:
|
| 218 |
+
pad_token_id = 0 # Fallback
|
| 219 |
|
| 220 |
with torch.no_grad():
|
| 221 |
outputs = model.generate(
|
|
|
|
| 224 |
do_sample=True,
|
| 225 |
temperature=0.3,
|
| 226 |
top_p=0.8,
|
| 227 |
+
pad_token_id=pad_token_id,
|
| 228 |
+
attention_mask=inputs.get('attention_mask', None) # FIXED: Explicit attention mask
|
| 229 |
)
|
| 230 |
|
| 231 |
+
# FIXED: Extract generated tokens correctly
|
| 232 |
+
input_length = inputs["input_ids"].shape[1]
|
| 233 |
+
generated_ids = outputs[0][input_length:]
|
| 234 |
response = tokenizer.decode(generated_ids, skip_special_tokens=True)
|
| 235 |
coordinates = extract_coordinates(response)
|
| 236 |
|
| 237 |
return {
|
| 238 |
"topk_points": coordinates,
|
| 239 |
+
"response": response.strip(),
|
| 240 |
"success": True
|
| 241 |
}
|
| 242 |
|
| 243 |
except Exception as e:
|
| 244 |
logger.error(f"Inference error: {e}")
|
| 245 |
+
# FIXED: More detailed error logging
|
| 246 |
+
import traceback
|
| 247 |
+
logger.error(f"Full traceback: {traceback.format_exc()}")
|
| 248 |
+
|
| 249 |
return {
|
| 250 |
"topk_points": [(0.5, 0.5)],
|
| 251 |
"response": f"Error during inference: {str(e)}",
|
|
|
|
| 282 |
|
| 283 |
try:
|
| 284 |
pil_image = Image.open(BytesIO(image_data)).convert("RGB")
|
| 285 |
+
# FIXED: Log image dimensions for debugging
|
| 286 |
+
logger.debug(f"Image dimensions: {pil_image.size}")
|
| 287 |
except Exception as e:
|
| 288 |
raise HTTPException(status_code=400, detail=f"Invalid image format: {e}")
|
| 289 |
|
| 290 |
+
# FIXED: Improved conversation structure
|
| 291 |
conversation = [
|
| 292 |
{
|
| 293 |
"role": "system",
|
|
|
|
| 315 |
|
| 316 |
# Run inference
|
| 317 |
pred = cpu_inference(conversation, model, tokenizer, processor)
|
| 318 |
+
|
| 319 |
+
if not pred["success"]:
|
| 320 |
+
logger.warning(f"Inference failed: {pred['response']}")
|
| 321 |
+
|
| 322 |
px, py = pred["topk_points"][0]
|
| 323 |
|
| 324 |
return JSONResponse(content={
|
|
|
|
| 332 |
raise
|
| 333 |
except Exception as e:
|
| 334 |
logger.error(f"Prediction error: {e}")
|
| 335 |
+
import traceback
|
| 336 |
+
logger.error(f"Full traceback: {traceback.format_exc()}")
|
| 337 |
raise HTTPException(
|
| 338 |
status_code=500,
|
| 339 |
detail=f"Internal server error: {str(e)}"
|
|
|
|
| 355 |
import transformers
|
| 356 |
available_classes = [attr for attr in dir(transformers) if 'Qwen' in attr or 'VL' in attr]
|
| 357 |
|
| 358 |
+
debug_info = {
|
| 359 |
"model_loaded": model_loaded,
|
| 360 |
"processor_type": type(processor).__name__ if processor else None,
|
| 361 |
"model_type": type(model).__name__ if model else None,
|
| 362 |
"available_qwen_classes": available_classes,
|
| 363 |
"transformers_version": transformers.__version__
|
| 364 |
+
}
|
| 365 |
+
|
| 366 |
+
# FIXED: Add tokenizer info for debugging
|
| 367 |
+
if processor and hasattr(processor, 'tokenizer'):
|
| 368 |
+
debug_info.update({
|
| 369 |
+
"tokenizer_type": type(processor.tokenizer).__name__,
|
| 370 |
+
"pad_token": processor.tokenizer.pad_token,
|
| 371 |
+
"pad_token_id": processor.tokenizer.pad_token_id,
|
| 372 |
+
"eos_token": processor.tokenizer.eos_token,
|
| 373 |
+
"eos_token_id": processor.tokenizer.eos_token_id,
|
| 374 |
+
"padding_side": processor.tokenizer.padding_side
|
| 375 |
+
})
|
| 376 |
+
|
| 377 |
+
return debug_info
|