Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM
|
| 4 |
import deepspeed
|
|
|
|
| 5 |
|
| 6 |
# Model name
|
| 7 |
model_name = "OpenGVLab/InternVideo2_5_Chat_8B"
|
|
@@ -9,19 +9,27 @@ model_name = "OpenGVLab/InternVideo2_5_Chat_8B"
|
|
| 9 |
# Load tokenizer
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 11 |
|
| 12 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
model = AutoModelForCausalLM.from_pretrained(
|
| 14 |
model_name,
|
| 15 |
trust_remote_code=True,
|
| 16 |
-
torch_dtype=torch.float16,
|
| 17 |
-
device_map="auto"
|
| 18 |
-
deepspeed={"stage": 3} # Enable DeepSpeed ZeRO-3
|
| 19 |
-
|
| 20 |
)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
# Define inference function
|
| 23 |
def chat_with_model(prompt):
|
| 24 |
-
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 25 |
output = model.generate(**inputs, max_length=200)
|
| 26 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 27 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
import deepspeed
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
|
| 6 |
# Model name
|
| 7 |
model_name = "OpenGVLab/InternVideo2_5_Chat_8B"
|
|
|
|
| 9 |
# Load tokenizer
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 11 |
|
| 12 |
+
# Enable DeepSpeed Inference (ZeRO-3)
|
| 13 |
+
ds_engine = deepspeed.init_inference(
|
| 14 |
+
dtype=torch.float16, # Use float16 for efficiency
|
| 15 |
+
replace_method="auto", # Automatically replace ops for inference
|
| 16 |
+
replace_with_kernel_inject=True
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
# Load model with DeepSpeed
|
| 20 |
model = AutoModelForCausalLM.from_pretrained(
|
| 21 |
model_name,
|
| 22 |
trust_remote_code=True,
|
| 23 |
+
torch_dtype=torch.float16,
|
| 24 |
+
device_map="auto" # Auto place on GPU
|
|
|
|
|
|
|
| 25 |
)
|
| 26 |
|
| 27 |
+
# Apply DeepSpeed to model
|
| 28 |
+
model = ds_engine.module(model)
|
| 29 |
+
|
| 30 |
# Define inference function
|
| 31 |
def chat_with_model(prompt):
|
| 32 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 33 |
output = model.generate(**inputs, max_length=200)
|
| 34 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 35 |
|