Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,45 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import torch
|
| 3 |
-
from
|
| 4 |
-
|
| 5 |
-
# Model name
|
| 6 |
-
model_name = "OpenGVLab/InternVideo2_5_Chat_8B"
|
| 7 |
-
|
| 8 |
-
|
| 9 |
|
| 10 |
-
# Load tokenizer
|
| 11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
model = AutoModelForCausalLM.from_pretrained(
|
| 18 |
-
|
| 19 |
trust_remote_code=True,
|
| 20 |
-
torch_dtype=torch.
|
| 21 |
-
|
| 22 |
)
|
| 23 |
-
|
| 24 |
-
# Move model to device
|
| 25 |
model.to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
# Define inference function
|
| 28 |
-
def chat_with_model(prompt):
|
| 29 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
| 30 |
-
output = model.generate(**inputs, max_length=200)
|
| 31 |
-
return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 32 |
-
|
| 33 |
-
# Create Gradio UI
|
| 34 |
-
demo = gr.Interface(
|
| 35 |
-
fn=chat_with_model,
|
| 36 |
-
inputs=gr.Textbox(placeholder="Type your prompt here..."),
|
| 37 |
-
outputs="text",
|
| 38 |
-
title="InternVideo2.5 Chatbot",
|
| 39 |
-
description="A chatbot powered by InternVideo2_5_Chat_8B.",
|
| 40 |
-
theme="compact"
|
| 41 |
-
)
|
| 42 |
|
| 43 |
-
# Run the Gradio app
|
| 44 |
if __name__ == "__main__":
|
| 45 |
-
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import os.path as osp
|
| 3 |
+
|
| 4 |
import gradio as gr
|
| 5 |
+
import spaces
|
| 6 |
import torch
|
| 7 |
+
from threading import Thread
|
| 8 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
|
|
|
|
|
|
| 10 |
|
| 11 |
+
HEADER = ("""
|
| 12 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
| 13 |
+
<a href="" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
|
| 14 |
+
</a>
|
| 15 |
+
<div>
|
| 16 |
+
<h1>VideoGPT: Frontier Multimodal Foundation Models for Video Understanding</h1>
|
| 17 |
+
<h5 style="margin: 0;"></h5>
|
| 18 |
+
</div>
|
| 19 |
+
</div>
|
| 20 |
+
""")
|
| 21 |
|
| 22 |
+
device = "cuda"
|
| 23 |
model = AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
"DAMO-NLP-SG/VideoLLaMA3-7B",
|
| 25 |
trust_remote_code=True,
|
| 26 |
+
torch_dtype=torch.bfloat16,
|
| 27 |
+
attn_implementation="flash_attention_2",
|
| 28 |
)
|
|
|
|
|
|
|
| 29 |
model.to(device)
|
| 30 |
+
processor = AutoProcessor.from_pretrained("DAMO-NLP-SG/VideoLLaMA3-7B", trust_remote_code=True)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
example_dir = "./examples"
|
| 34 |
+
image_formats = ("png", "jpg", "jpeg")
|
| 35 |
+
video_formats = ("mp4",)
|
| 36 |
+
|
| 37 |
+
image_examples, video_examples = [], []
|
| 38 |
+
if example_dir is not None:
|
| 39 |
+
example_files = [
|
| 40 |
+
osp.join(example_dir, f) for f in os.listdir(example_dir)
|
| 41 |
+
]
|
| 42 |
+
for example_file in example_files:
|
| 43 |
+
if example_file.endswith(image_formats):
|
| 44 |
+
image_examples.append([example_file])
|
| 45 |
+
elif example_file.endswith(video_formats):
|
| 46 |
+
video_examples.append([example_file])
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def _on_video_upload(messages, video):
|
| 50 |
+
if video is not None:
|
| 51 |
+
# messages.append({"role": "user", "content": gr.Video(video)})
|
| 52 |
+
messages.append({"role": "user", "content": {"path": video}})
|
| 53 |
+
return messages, None
|
| 54 |
+
|
| 55 |
+
def _on_image_upload(messages, image):
|
| 56 |
+
if image is not None:
|
| 57 |
+
# messages.append({"role": "user", "content": gr.Image(image)})
|
| 58 |
+
messages.append({"role": "user", "content": {"path": image}})
|
| 59 |
+
return messages, None
|
| 60 |
+
|
| 61 |
+
def _on_text_submit(messages, text):
|
| 62 |
+
messages.append({"role": "user", "content": text})
|
| 63 |
+
return messages, ""
|
| 64 |
+
|
| 65 |
+
@spaces.GPU(duration=120)
|
| 66 |
+
def _predict(messages, input_text, do_sample, temperature, top_p, max_new_tokens,
|
| 67 |
+
fps, max_frames):
|
| 68 |
+
if len(input_text) > 0:
|
| 69 |
+
messages.append({"role": "user", "content": input_text})
|
| 70 |
+
new_messages = []
|
| 71 |
+
contents = []
|
| 72 |
+
for message in messages:
|
| 73 |
+
if message["role"] == "assistant":
|
| 74 |
+
if len(contents):
|
| 75 |
+
new_messages.append({"role": "user", "content": contents})
|
| 76 |
+
contents = []
|
| 77 |
+
new_messages.append(message)
|
| 78 |
+
elif message["role"] == "user":
|
| 79 |
+
if isinstance(message["content"], str):
|
| 80 |
+
contents.append(message["content"])
|
| 81 |
+
else:
|
| 82 |
+
media_path = message["content"][0]
|
| 83 |
+
if media_path.endswith(video_formats):
|
| 84 |
+
contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}})
|
| 85 |
+
elif media_path.endswith(image_formats):
|
| 86 |
+
contents.append({"type": "image", "image": {"image_path": media_path}})
|
| 87 |
+
else:
|
| 88 |
+
raise ValueError(f"Unsupported media type: {media_path}")
|
| 89 |
+
|
| 90 |
+
if len(contents):
|
| 91 |
+
new_messages.append({"role": "user", "content": contents})
|
| 92 |
+
|
| 93 |
+
if len(new_messages) == 0 or new_messages[-1]["role"] != "user":
|
| 94 |
+
return messages
|
| 95 |
+
|
| 96 |
+
generation_config = {
|
| 97 |
+
"do_sample": do_sample,
|
| 98 |
+
"temperature": temperature,
|
| 99 |
+
"top_p": top_p,
|
| 100 |
+
"max_new_tokens": max_new_tokens
|
| 101 |
+
}
|
| 102 |
+
|
| 103 |
+
inputs = processor(
|
| 104 |
+
conversation=new_messages,
|
| 105 |
+
add_system_prompt=True,
|
| 106 |
+
add_generation_prompt=True,
|
| 107 |
+
return_tensors="pt"
|
| 108 |
+
)
|
| 109 |
+
inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
|
| 110 |
+
if "pixel_values" in inputs:
|
| 111 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
|
| 112 |
+
|
| 113 |
+
streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 114 |
+
generation_kwargs = {
|
| 115 |
+
**inputs,
|
| 116 |
+
**generation_config,
|
| 117 |
+
"streamer": streamer,
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 121 |
+
thread.start()
|
| 122 |
+
|
| 123 |
+
messages.append({"role": "assistant", "content": ""})
|
| 124 |
+
for token in streamer:
|
| 125 |
+
messages[-1]['content'] += token
|
| 126 |
+
yield messages
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
with gr.Blocks() as interface:
|
| 130 |
+
gr.HTML(HEADER)
|
| 131 |
+
with gr.Row():
|
| 132 |
+
chatbot = gr.Chatbot(type="messages", elem_id="chatbot", height=835)
|
| 133 |
+
|
| 134 |
+
with gr.Column():
|
| 135 |
+
with gr.Tab(label="Input"):
|
| 136 |
+
|
| 137 |
+
with gr.Row():
|
| 138 |
+
input_video = gr.Video(sources=["upload"], label="Upload Video")
|
| 139 |
+
input_image = gr.Image(sources=["upload"], type="filepath", label="Upload Image")
|
| 140 |
+
|
| 141 |
+
input_text = gr.Textbox(label="Input Text", placeholder="Type your message here and press enter to submit")
|
| 142 |
+
|
| 143 |
+
submit_button = gr.Button("Generate")
|
| 144 |
+
|
| 145 |
+
gr.Examples(examples=[
|
| 146 |
+
[f"examples/bear.mp4", "What is unusual in the video?"],
|
| 147 |
+
[f"examples/dog.mp4", "Please describe the video in detail."],
|
| 148 |
+
[f"examples/exercise.mp4", "What is the man doing in the video?"],
|
| 149 |
+
], inputs=[input_video, input_text], label="Video examples")
|
| 150 |
+
|
| 151 |
+
with gr.Tab(label="Configure"):
|
| 152 |
+
with gr.Accordion("Generation Config", open=True):
|
| 153 |
+
do_sample = gr.Checkbox(value=True, label="Do Sample")
|
| 154 |
+
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Temperature")
|
| 155 |
+
top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
|
| 156 |
+
max_new_tokens = gr.Slider(minimum=0, maximum=4096, value=2048, step=1, label="Max New Tokens")
|
| 157 |
+
|
| 158 |
+
with gr.Accordion("Video Config", open=True):
|
| 159 |
+
fps = gr.Slider(minimum=0.0, maximum=10.0, value=1, label="FPS")
|
| 160 |
+
max_frames = gr.Slider(minimum=0, maximum=256, value=180, step=1, label="Max Frames")
|
| 161 |
+
|
| 162 |
+
input_video.change(_on_video_upload, [chatbot, input_video], [chatbot, input_video])
|
| 163 |
+
input_image.change(_on_image_upload, [chatbot, input_image], [chatbot, input_image])
|
| 164 |
+
input_text.submit(_on_text_submit, [chatbot, input_text], [chatbot, input_text])
|
| 165 |
+
submit_button.click(
|
| 166 |
+
_predict,
|
| 167 |
+
[
|
| 168 |
+
chatbot, input_text, do_sample, temperature, top_p, max_new_tokens,
|
| 169 |
+
fps, max_frames
|
| 170 |
+
],
|
| 171 |
+
[chatbot],
|
| 172 |
+
)
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
|
|
|
| 175 |
if __name__ == "__main__":
|
| 176 |
+
interface.launch()
|