Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,60 +1,46 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
import numpy as np
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# =========================
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
# =========================
|
| 49 |
-
# واجهة Gradio تاب واحدة
|
| 50 |
-
# =========================
|
| 51 |
-
with gr.Blocks() as demo:
|
| 52 |
-
gr.Markdown("## مكتبة AI Explorer - البحث الحر المحلي")
|
| 53 |
-
with gr.Row():
|
| 54 |
-
query = gr.Textbox(label="اكتب سؤال البحث")
|
| 55 |
-
source = gr.Dropdown(choices=["Book", "Thesis"], label="نوع المصدر")
|
| 56 |
-
btn = gr.Button("بحث")
|
| 57 |
-
output = gr.Dataframe(headers=["العنوان","المؤلف","السنة","المجال"])
|
| 58 |
-
btn.click(search_library, inputs=[query, source], outputs=output)
|
| 59 |
-
|
| 60 |
-
demo.launch()
|
|
|
|
| 1 |
+
import joblib
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
# =========================
|
| 6 |
+
# تحميل البيانات
|
| 7 |
+
# =========================
|
| 8 |
+
books = joblib.load("books.pkl")
|
| 9 |
+
theses = joblib.load("Theses.pkl")
|
| 10 |
+
books_emb = joblib.load("books_embeddings.pkl")
|
| 11 |
+
theses_emb = joblib.load("theses_embeddings.pkl")
|
| 12 |
+
|
| 13 |
+
# =========================
|
| 14 |
+
# مثال دالة بحث بسيطة
|
| 15 |
+
# =========================
|
| 16 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 17 |
+
|
| 18 |
+
def search_library(query_embedding, top_k=5):
|
| 19 |
+
# دمج كل Embeddings
|
| 20 |
+
all_emb = np.vstack([books_emb, theses_emb])
|
| 21 |
+
similarity = cosine_similarity([query_embedding], all_emb)[0]
|
| 22 |
+
top_indices = similarity.argsort()[-top_k:][::-1]
|
| 23 |
+
|
| 24 |
+
results = []
|
| 25 |
+
for idx in top_indices:
|
| 26 |
+
if idx < len(books):
|
| 27 |
+
results.append(books[idx])
|
| 28 |
+
else:
|
| 29 |
+
results.append(theses[idx - len(books)])
|
| 30 |
+
return results
|
| 31 |
+
|
| 32 |
+
# =========================
|
| 33 |
+
# واجهة Gradio
|
| 34 |
+
# =========================
|
| 35 |
+
def search_interface(query_embedding):
|
| 36 |
+
return search_library(query_embedding)
|
| 37 |
+
|
| 38 |
+
demo = gr.Interface(
|
| 39 |
+
fn=search_interface,
|
| 40 |
+
inputs=gr.inputs.Dataframe(), # هنا ممكن تغيّري حسب نوع المدخل
|
| 41 |
+
outputs="text",
|
| 42 |
+
title="Library Search",
|
| 43 |
+
description="بحث في مكتبة الكتب والرسائل"
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|