Spaces:
Runtime error
Runtime error
upload python support file
Browse files- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-310.pyc +0 -0
- src/__pycache__/data.cpython-310.pyc +0 -0
- src/__pycache__/model.cpython-310.pyc +0 -0
- src/__pycache__/prediction.cpython-310.pyc +0 -0
- src/data.py +460 -0
- src/model.py +65 -0
- src/prediction.py +161 -0
src/__init__.py
ADDED
|
File without changes
|
src/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (159 Bytes). View file
|
|
|
src/__pycache__/data.cpython-310.pyc
ADDED
|
Binary file (14.5 kB). View file
|
|
|
src/__pycache__/model.cpython-310.pyc
ADDED
|
Binary file (1.88 kB). View file
|
|
|
src/__pycache__/prediction.cpython-310.pyc
ADDED
|
Binary file (6.07 kB). View file
|
|
|
src/data.py
ADDED
|
@@ -0,0 +1,460 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from pytorch_forecasting import TimeSeriesDataSet
|
| 4 |
+
from pytorch_forecasting.data import GroupNormalizer
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Energy_DataLoader:
|
| 10 |
+
"""
|
| 11 |
+
A class for loading and preparing energy consumption data for modeling.
|
| 12 |
+
|
| 13 |
+
Parameters:
|
| 14 |
+
path (str): The path to the data file.
|
| 15 |
+
test_dataset_size (int): The size of the test dataset. Defaults to 24.
|
| 16 |
+
max_prediction_length (int): The maximum prediction length. Defaults to 24.
|
| 17 |
+
max_encoder_length (int): The maximum encoder length. Defaults to 168.
|
| 18 |
+
|
| 19 |
+
Methods:
|
| 20 |
+
load_data(): Loads the energy consumption data from a CSV file.
|
| 21 |
+
data_transformation(data): Performs data transformation and preprocessing.
|
| 22 |
+
lead(df, lead): Computes the lead of the power usage time series for each consumer.
|
| 23 |
+
lag(df, lag): Computes the lag of the power usage time series for each consumer.
|
| 24 |
+
select_chunk(data): Selects a subset of the data corresponding to the top 10 consumers.
|
| 25 |
+
time_features(df): Extracts time-based features from the data.
|
| 26 |
+
data_split(df): Splits the data into training and test datasets.
|
| 27 |
+
tft_data(): Prepares the data for training with the Temporal Fusion Transformer (TFT) model.
|
| 28 |
+
fb_data(): Prepares the data for training with the Facebook Prophet model.
|
| 29 |
+
"""
|
| 30 |
+
def __init__(self,path:str,test_dataset_size:int=24,
|
| 31 |
+
max_prediction_length:int=24,
|
| 32 |
+
max_encoder_length:int=168):
|
| 33 |
+
"""
|
| 34 |
+
Initialize the Energy_DataLoader class.
|
| 35 |
+
|
| 36 |
+
Parameters:
|
| 37 |
+
path (str): The path to the data file.
|
| 38 |
+
test_dataset_size (int): The size of the test dataset. Defaults to 24.
|
| 39 |
+
max_prediction_length (int): The maximum prediction length. Defaults to 24.
|
| 40 |
+
max_encoder_length (int): The maximum encoder length. Defaults to 168.
|
| 41 |
+
"""
|
| 42 |
+
self.path=path
|
| 43 |
+
self.test_dataset_size=test_dataset_size
|
| 44 |
+
self.max_prediction_length=max_prediction_length
|
| 45 |
+
self.max_encoder_length=max_encoder_length
|
| 46 |
+
|
| 47 |
+
def load_data(self):
|
| 48 |
+
"""
|
| 49 |
+
Load the energy consumption data from a CSV file.
|
| 50 |
+
|
| 51 |
+
Returns:
|
| 52 |
+
data (pandas.DataFrame): The loaded data.
|
| 53 |
+
"""
|
| 54 |
+
try:
|
| 55 |
+
data = pd.read_csv(self.path, index_col=0, sep=';', decimal=',')
|
| 56 |
+
print('Load the data sucessfully.')
|
| 57 |
+
return data
|
| 58 |
+
except:
|
| 59 |
+
print("Load the Data Again")
|
| 60 |
+
|
| 61 |
+
def data_transformation(self,data:pd.DataFrame):
|
| 62 |
+
"""
|
| 63 |
+
Perform data transformation and preprocessing.
|
| 64 |
+
|
| 65 |
+
Parameters:
|
| 66 |
+
data (pandas.DataFrame): The input data.
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
data (pandas.DataFrame): The transformed data.
|
| 70 |
+
"""
|
| 71 |
+
data.index = pd.to_datetime(data.index)
|
| 72 |
+
data.sort_index(inplace=True)
|
| 73 |
+
# resample the data into hr
|
| 74 |
+
data = data.resample('1h').mean().replace(0., np.nan)
|
| 75 |
+
new_data=data.reset_index()
|
| 76 |
+
new_data['year']=new_data['index'].dt.year
|
| 77 |
+
data1=new_data.loc[(new_data['year']!=2011)]
|
| 78 |
+
data1=data1.set_index('index')
|
| 79 |
+
data1=data1.drop(['year'],axis=1)
|
| 80 |
+
return data1
|
| 81 |
+
|
| 82 |
+
def lead(self,df:pd.DataFrame,lead:int=-1):
|
| 83 |
+
"""
|
| 84 |
+
Compute the lead of the power usage time series for each consumer.
|
| 85 |
+
|
| 86 |
+
Parameters:
|
| 87 |
+
df (pandas.DataFrame): The input dataframe.
|
| 88 |
+
lead (int): The lead time period. Defaults to -1.
|
| 89 |
+
|
| 90 |
+
Returns:
|
| 91 |
+
d_lead (pandas.Series): The lead time series.
|
| 92 |
+
"""
|
| 93 |
+
d_lead=df.groupby('consumer_id')['power_usage'].shift(lead)
|
| 94 |
+
return d_lead
|
| 95 |
+
|
| 96 |
+
def lag(self,df:pd.DataFrame,lag:int=1):
|
| 97 |
+
"""
|
| 98 |
+
Compute the lag of the power usage time series for each consumer.
|
| 99 |
+
|
| 100 |
+
Parameters:
|
| 101 |
+
df (pandas.DataFrame): The input dataframe.
|
| 102 |
+
lag (int): The lag time period. Defaults to 1.
|
| 103 |
+
|
| 104 |
+
Returns:
|
| 105 |
+
d_lag (pandas.Series): The lag time series.
|
| 106 |
+
"""
|
| 107 |
+
d_lag=df.groupby('consumer_id')['power_usage'].shift(lag)
|
| 108 |
+
return d_lag
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def select_chunk(self,data:pd.DataFrame):
|
| 112 |
+
"""
|
| 113 |
+
Select a subset of the data corresponding to the top 10 consumers.
|
| 114 |
+
|
| 115 |
+
Parameters:
|
| 116 |
+
data (pandas.DataFrame): The input data.
|
| 117 |
+
|
| 118 |
+
Returns:
|
| 119 |
+
df (pandas.DataFrame): The selected chunk of data.
|
| 120 |
+
"""
|
| 121 |
+
top_10_consumer=data.columns[:10]
|
| 122 |
+
# select Chuck of data intially
|
| 123 |
+
# df=data[['MT_002','MT_004','MT_005','MT_006','MT_008' ]]
|
| 124 |
+
df=data[top_10_consumer]
|
| 125 |
+
return df
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
def time_features(self,df:pd.DataFrame):
|
| 129 |
+
"""
|
| 130 |
+
Extract time-based features from the data.
|
| 131 |
+
|
| 132 |
+
Parameters:
|
| 133 |
+
df (pandas.DataFrame): The input data.
|
| 134 |
+
|
| 135 |
+
Returns:
|
| 136 |
+
time_df (pandas.DataFrame): The dataframe with time-based features.
|
| 137 |
+
earliest_time (pandas.Timestamp): The earliest timestamp in the data.
|
| 138 |
+
"""
|
| 139 |
+
earliest_time = df.index.min()
|
| 140 |
+
print(earliest_time)
|
| 141 |
+
df_list = []
|
| 142 |
+
for label in df:
|
| 143 |
+
print()
|
| 144 |
+
ts = df[label]
|
| 145 |
+
|
| 146 |
+
start_date = min(ts.fillna(method='ffill').dropna().index)
|
| 147 |
+
end_date = max(ts.fillna(method='bfill').dropna().index)
|
| 148 |
+
# print(start_date)
|
| 149 |
+
# print(end_date)
|
| 150 |
+
active_range = (ts.index >= start_date) & (ts.index <= end_date)
|
| 151 |
+
ts = ts[active_range].fillna(0.)
|
| 152 |
+
|
| 153 |
+
tmp = pd.DataFrame({'power_usage': ts})
|
| 154 |
+
date = tmp.index
|
| 155 |
+
|
| 156 |
+
tmp['hours_from_start'] = (date - earliest_time).seconds / 60 / 60 + (date - earliest_time).days * 24
|
| 157 |
+
tmp['hours_from_start'] = tmp['hours_from_start'].astype('int')
|
| 158 |
+
|
| 159 |
+
tmp['days_from_start'] = (date - earliest_time).days
|
| 160 |
+
tmp['date'] = date
|
| 161 |
+
tmp['consumer_id'] = label
|
| 162 |
+
tmp['hour'] = date.hour
|
| 163 |
+
tmp['day'] = date.day
|
| 164 |
+
tmp['day_of_week'] = date.dayofweek
|
| 165 |
+
tmp['month'] = date.month
|
| 166 |
+
|
| 167 |
+
#stack all time series vertically
|
| 168 |
+
df_list.append(tmp)
|
| 169 |
+
|
| 170 |
+
time_df = pd.concat(df_list).reset_index(drop=True)
|
| 171 |
+
|
| 172 |
+
lead_1=self.lead(time_df)
|
| 173 |
+
time_df['Lead_1']=lead_1
|
| 174 |
+
lag_1=self.lag(time_df,lag=1)
|
| 175 |
+
time_df['lag_1']=lag_1
|
| 176 |
+
lag_5=self.lag(time_df,lag=5)
|
| 177 |
+
time_df['lag_5']=lag_5
|
| 178 |
+
time_df=time_df.dropna()
|
| 179 |
+
return time_df,earliest_time
|
| 180 |
+
|
| 181 |
+
def data_split(self,df:pd.DataFrame):
|
| 182 |
+
"""
|
| 183 |
+
Split the data into training and test datasets.
|
| 184 |
+
|
| 185 |
+
Parameters:
|
| 186 |
+
df (pandas.DataFrame): The input data.
|
| 187 |
+
|
| 188 |
+
Returns:
|
| 189 |
+
train_dataset (pandas.DataFrame): The training dataset.
|
| 190 |
+
test_dataset (pandas.DataFrame): The test dataset.
|
| 191 |
+
training (TimeSeriesDataSet): The training dataset for modeling.
|
| 192 |
+
validation (TimeSeriesDataSet): The validation dataset for modeling.
|
| 193 |
+
"""
|
| 194 |
+
## Train dataset >> train + validation
|
| 195 |
+
train_dataset=df.loc[df['date']<df.date.unique()[-self.test_dataset_size:][0]]
|
| 196 |
+
|
| 197 |
+
## Test Dataset
|
| 198 |
+
test_dataset=df.loc[df['date']>=df.date.unique()[-self.test_dataset_size:][0]]
|
| 199 |
+
|
| 200 |
+
# training stop cut off
|
| 201 |
+
training_cutoff = train_dataset["hours_from_start"].max() - self.max_prediction_length
|
| 202 |
+
print('training cutoff ::',training_cutoff)
|
| 203 |
+
training = TimeSeriesDataSet(
|
| 204 |
+
train_dataset[lambda x: x.hours_from_start <= training_cutoff],
|
| 205 |
+
time_idx="hours_from_start",
|
| 206 |
+
target="Lead_1",
|
| 207 |
+
group_ids=["consumer_id"],
|
| 208 |
+
min_encoder_length=self.max_encoder_length // 2,
|
| 209 |
+
max_encoder_length=self.max_encoder_length,
|
| 210 |
+
min_prediction_length=1,
|
| 211 |
+
max_prediction_length=self.max_prediction_length,
|
| 212 |
+
static_categoricals=["consumer_id"],
|
| 213 |
+
time_varying_known_reals=['power_usage',"hours_from_start","day","day_of_week",
|
| 214 |
+
"month", 'hour','lag_1','lag_5'],
|
| 215 |
+
time_varying_unknown_reals=['Lead_1'],
|
| 216 |
+
target_normalizer=GroupNormalizer(
|
| 217 |
+
groups=["consumer_id"], transformation="softplus" # softplus: Apply softplus to output (inverse transformation) and #inverse softplus to input,we normalize by group
|
| 218 |
+
),
|
| 219 |
+
add_relative_time_idx=True, # if to add a relative time index as feature (i.e. for each sampled sequence, the index will range from -encoder_length to prediction_length)
|
| 220 |
+
add_target_scales=True,# if to add scales for target to static real features (i.e. add the center and scale of the unnormalized timeseries as features)
|
| 221 |
+
add_encoder_length=True, # if to add decoder length to list of static real variables. True if min_encoder_length != max_encoder_length
|
| 222 |
+
# lags={"power_usage":[12,24]}
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
validation = TimeSeriesDataSet.from_dataset(training, train_dataset, predict=True, stop_randomization=True)
|
| 227 |
+
|
| 228 |
+
# create dataloaders for our model
|
| 229 |
+
batch_size = 32
|
| 230 |
+
# if you have a strong GPU, feel free to increase the number of workers
|
| 231 |
+
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=0)
|
| 232 |
+
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size * 10, num_workers=0)
|
| 233 |
+
return train_dataset,test_dataset,training,validation
|
| 234 |
+
|
| 235 |
+
def tft_data(self):
|
| 236 |
+
"""
|
| 237 |
+
Prepare the data for training with the Temporal Fusion Transformer (TFT) model.
|
| 238 |
+
|
| 239 |
+
Returns:
|
| 240 |
+
train_dataset (pandas.DataFrame): The training dataset.
|
| 241 |
+
test_dataset (pandas.DataFrame): The test dataset.
|
| 242 |
+
training (TimeSeriesDataSet): The training dataset for modeling.
|
| 243 |
+
validation (TimeSeriesDataSet): The validation dataset for modeling.
|
| 244 |
+
earliest_time (pandas.Timestamp): The earliest timestamp in the data.
|
| 245 |
+
"""
|
| 246 |
+
df=self.load_data()
|
| 247 |
+
df=self.data_transformation(df)
|
| 248 |
+
df=self.select_chunk(df)
|
| 249 |
+
df,earliest_time=self.time_features(df)
|
| 250 |
+
train_dataset,test_dataset,training,validation =self.data_split(df)
|
| 251 |
+
return train_dataset,test_dataset,training,validation,earliest_time
|
| 252 |
+
|
| 253 |
+
def fb_data(self):
|
| 254 |
+
"""
|
| 255 |
+
Prepare the data for training with the Facebook Prophet model.
|
| 256 |
+
|
| 257 |
+
Returns:
|
| 258 |
+
train_data (pandas.DataFrame): The training dataset.
|
| 259 |
+
test_data (pandas.DataFrame): The test dataset.
|
| 260 |
+
consumer_dummay (pandas.Index): The consumer ID columns.
|
| 261 |
+
"""
|
| 262 |
+
df=self.load_data()
|
| 263 |
+
df=self.data_transformation(df)
|
| 264 |
+
df=self.select_chunk(df)
|
| 265 |
+
df,earliest_time=self.time_features(df)
|
| 266 |
+
consumer_dummay=pd.get_dummies(df['consumer_id'])
|
| 267 |
+
## add encoded column into main
|
| 268 |
+
df[consumer_dummay.columns]=consumer_dummay
|
| 269 |
+
updated_df=df.drop(['consumer_id','hours_from_start','days_from_start'],axis=1)
|
| 270 |
+
updated_df=updated_df.rename({'date':'ds',"Lead_1":'y'},axis=1)
|
| 271 |
+
|
| 272 |
+
## Train dataset >> train + validation
|
| 273 |
+
train_data=updated_df.loc[updated_df['ds']<updated_df.ds.unique()[-self.test_dataset_size:][0]]
|
| 274 |
+
|
| 275 |
+
## Test Dataset
|
| 276 |
+
test_data=updated_df.loc[updated_df['ds']>=updated_df.ds.unique()[-self.test_dataset_size:][0]]
|
| 277 |
+
|
| 278 |
+
return train_data,test_data,consumer_dummay.columns
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
#-------------------------------------------------------------------------------------
|
| 283 |
+
class StoreDataLoader:
|
| 284 |
+
def __init__(self,path):
|
| 285 |
+
self.path=path
|
| 286 |
+
def load_data(self):
|
| 287 |
+
try:
|
| 288 |
+
data = pd.read_csv(self.path)
|
| 289 |
+
data['date']= pd.to_datetime(data['date'])
|
| 290 |
+
items=[i for i in range(1,11)]
|
| 291 |
+
data=data.loc[(data['store']==1) & (data['item'].isin(items))]
|
| 292 |
+
# data['date']=data['date'].dt.date
|
| 293 |
+
print('Load the data sucessfully.')
|
| 294 |
+
return data
|
| 295 |
+
except:
|
| 296 |
+
print("Load the Data Again")
|
| 297 |
+
|
| 298 |
+
def create_week_date_featues(self,df,date_column):
|
| 299 |
+
|
| 300 |
+
df['Month'] = pd.to_datetime(df[date_column]).dt.month
|
| 301 |
+
|
| 302 |
+
df['Day'] = pd.to_datetime(df[date_column]).dt.day
|
| 303 |
+
|
| 304 |
+
df['Dayofweek'] = pd.to_datetime(df[date_column]).dt.dayofweek
|
| 305 |
+
|
| 306 |
+
df['DayOfyear'] = pd.to_datetime(df[date_column]).dt.dayofyear
|
| 307 |
+
|
| 308 |
+
df['Week'] = pd.to_datetime(df[date_column]).dt.week
|
| 309 |
+
|
| 310 |
+
df['Quarter'] = pd.to_datetime(df[date_column]).dt.quarter
|
| 311 |
+
|
| 312 |
+
df['Is_month_start'] = np.where(pd.to_datetime(df[date_column]).dt.is_month_start,0,1)
|
| 313 |
+
|
| 314 |
+
df['Is_month_end'] = np.where(pd.to_datetime(df[date_column]).dt.is_month_end,0,1)
|
| 315 |
+
|
| 316 |
+
df['Is_quarter_start'] = np.where(pd.to_datetime(df[date_column]).dt.is_quarter_start,0,1)
|
| 317 |
+
|
| 318 |
+
df['Is_quarter_end'] = np.where(pd.to_datetime(df[date_column]).dt.is_quarter_end,0,1)
|
| 319 |
+
|
| 320 |
+
df['Is_year_start'] = np.where(pd.to_datetime(df[date_column]).dt.is_year_start,0,1)
|
| 321 |
+
|
| 322 |
+
df['Is_year_end'] = np.where(pd.to_datetime(df[date_column]).dt.is_year_end,0,1)
|
| 323 |
+
|
| 324 |
+
df['Semester'] = np.where(df[date_column].isin([1,2]),1,2)
|
| 325 |
+
|
| 326 |
+
df['Is_weekend'] = np.where(df[date_column].isin([5,6]),1,0)
|
| 327 |
+
|
| 328 |
+
df['Is_weekday'] = np.where(df[date_column].isin([0,1,2,3,4]),1,0)
|
| 329 |
+
|
| 330 |
+
df['Days_in_month'] = pd.to_datetime(df[date_column]).dt.days_in_month
|
| 331 |
+
|
| 332 |
+
return df
|
| 333 |
+
|
| 334 |
+
def lead(self,df,lead=-1):
|
| 335 |
+
d_lead=df.groupby(['store','item'])['sales'].shift(lead)
|
| 336 |
+
return d_lead
|
| 337 |
+
def lag(self,df,lag=1):
|
| 338 |
+
d_lag=df.groupby(['store','item'])['sales'].shift(lag)
|
| 339 |
+
return d_lag
|
| 340 |
+
|
| 341 |
+
def time_features(self,df):
|
| 342 |
+
earliest_time = df['date'].min()
|
| 343 |
+
print(earliest_time)
|
| 344 |
+
|
| 345 |
+
df['hours_from_start'] = (df['date'] - earliest_time).dt.seconds / 60 / 60 + (df['date'] - earliest_time).dt.days * 24
|
| 346 |
+
df['hours_from_start'] = df['hours_from_start'].astype('int')
|
| 347 |
+
|
| 348 |
+
df['days_from_start'] = (df['date'] - earliest_time).dt.days
|
| 349 |
+
# new_weather_data['date'] = date
|
| 350 |
+
# new_weather_data['consumer_id'] = label
|
| 351 |
+
|
| 352 |
+
df=self.create_week_date_featues(df,'date')
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
# change dtypes of store
|
| 356 |
+
df['store']=df['store'].astype('str')
|
| 357 |
+
df['item']=df['item'].astype('str')
|
| 358 |
+
df['sales']=df['sales'].astype('float')
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
df["log_sales"] = np.log(df.sales + 1e-8)
|
| 362 |
+
df["avg_demand_by_store"] = df.groupby(["days_from_start", "store"], observed=True).sales.transform("mean")
|
| 363 |
+
df["avg_demand_by_item"] = df.groupby(["days_from_start", "item"], observed=True).sales.transform("mean")
|
| 364 |
+
# items=[str(i) for i in range(1,11)]
|
| 365 |
+
# df=df.loc[(df['store']=='1') & (df['item'].isin(items))]
|
| 366 |
+
# df=df.reset_index(drop=True)
|
| 367 |
+
d_1=self.lead(df)
|
| 368 |
+
df['Lead_1']=d_1
|
| 369 |
+
d_lag1=self.lag(df,lag=1)
|
| 370 |
+
df['lag_1']=d_lag1
|
| 371 |
+
d_lag5=self.lag(df,lag=5)
|
| 372 |
+
df['lag_5']=d_lag5
|
| 373 |
+
df=df.dropna()
|
| 374 |
+
return df,earliest_time
|
| 375 |
+
|
| 376 |
+
def split_data(self,df,test_dataset_size=30,max_prediction_length=30,max_encoder_length=120):
|
| 377 |
+
# df=self.load_data()
|
| 378 |
+
# df,earliest_time=self.time_features(df)
|
| 379 |
+
## Train dataset >> train + validation
|
| 380 |
+
train_dataset=df.loc[df['date']<df.date.unique()[-test_dataset_size:][0]]
|
| 381 |
+
|
| 382 |
+
## Test Dataset
|
| 383 |
+
test_dataset=df.loc[df['date']>=df.date.unique()[-test_dataset_size:][0]]
|
| 384 |
+
|
| 385 |
+
|
| 386 |
+
training_cutoff = train_dataset["days_from_start"].max() - max_prediction_length
|
| 387 |
+
print("Training cutoff point ::",training_cutoff)
|
| 388 |
+
|
| 389 |
+
training = TimeSeriesDataSet(
|
| 390 |
+
train_dataset[lambda x: x.days_from_start <= training_cutoff],
|
| 391 |
+
time_idx="days_from_start",
|
| 392 |
+
target="Lead_1", ## target use as lead
|
| 393 |
+
group_ids=['store','item'],
|
| 394 |
+
min_encoder_length=max_encoder_length // 2,
|
| 395 |
+
max_encoder_length=max_encoder_length,
|
| 396 |
+
min_prediction_length=1,
|
| 397 |
+
max_prediction_length=max_prediction_length,
|
| 398 |
+
static_categoricals=["store",'item'],
|
| 399 |
+
static_reals=[],
|
| 400 |
+
time_varying_known_categoricals=[],
|
| 401 |
+
|
| 402 |
+
time_varying_known_reals=["days_from_start","Day", "Month","Dayofweek","DayOfyear","Days_in_month",'Week', 'Quarter',
|
| 403 |
+
'Is_month_start', 'Is_month_end', 'Is_quarter_start', 'Is_quarter_end',
|
| 404 |
+
'Is_year_start', 'Is_year_end', 'Semester', 'Is_weekend', 'Is_weekday','Dayofweek', 'DayOfyear','lag_1','lag_5','sales'],
|
| 405 |
+
|
| 406 |
+
time_varying_unknown_reals=['Lead_1','log_sales','avg_demand_by_store','avg_demand_by_item'],
|
| 407 |
+
|
| 408 |
+
target_normalizer=GroupNormalizer(
|
| 409 |
+
groups=["store","item"], transformation="softplus"
|
| 410 |
+
), # we normalize by group
|
| 411 |
+
add_relative_time_idx=True,
|
| 412 |
+
add_target_scales=True,
|
| 413 |
+
add_encoder_length=True, #
|
| 414 |
+
allow_missing_timesteps=True,
|
| 415 |
+
|
| 416 |
+
)
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
validation = TimeSeriesDataSet.from_dataset(training, train_dataset, predict=True, stop_randomization=True)
|
| 420 |
+
|
| 421 |
+
# create dataloaders for our model
|
| 422 |
+
batch_size = 32
|
| 423 |
+
# if you have a strong GPU, feel free to increase the number of workers
|
| 424 |
+
train_dataloader = training.to_dataloader(train=True, batch_size=batch_size, num_workers=0)
|
| 425 |
+
val_dataloader = validation.to_dataloader(train=False, batch_size=batch_size * 10, num_workers=0)
|
| 426 |
+
return train_dataset,test_dataset,training,validation
|
| 427 |
+
|
| 428 |
+
def tft_data(self):
|
| 429 |
+
df=self.load_data()
|
| 430 |
+
df,earliest_time=self.time_features(df)
|
| 431 |
+
train_dataset,test_dataset,training,validation=self.split_data(df)
|
| 432 |
+
return train_dataset,test_dataset,training,validation,earliest_time
|
| 433 |
+
|
| 434 |
+
def fb_data(self,test_dataset_size=30):
|
| 435 |
+
df=self.load_data()
|
| 436 |
+
df,earliest_time=self.time_features(df)
|
| 437 |
+
store_dummay=pd.get_dummies(df['store'],prefix='store')
|
| 438 |
+
# store_dummay.head()
|
| 439 |
+
|
| 440 |
+
item_dummay=pd.get_dummies(df['item'],prefix='item')
|
| 441 |
+
# item_dummay.head()
|
| 442 |
+
|
| 443 |
+
df_encode=pd.concat([store_dummay,item_dummay],axis=1)
|
| 444 |
+
# df_encode.head()
|
| 445 |
+
## add encoded column into main
|
| 446 |
+
df[df_encode.columns]=df_encode
|
| 447 |
+
df=df.drop(['store','item','log_sales','avg_demand_by_store','avg_demand_by_item'],axis=1)
|
| 448 |
+
df=df.rename({'date':'ds',"Lead_1":'y'},axis=1)
|
| 449 |
+
fb_train_data = df.loc[df['ds'] <= '2017-11-30']
|
| 450 |
+
fb_test_data = df.loc[df['ds'] > '2017-11-30']
|
| 451 |
+
# fb_train_data=df.loc[df['ds']<df.ds.unique()[-test_dataset_size:][0]]
|
| 452 |
+
# fb_test_data=df.loc[df['ds']>=df.ds.unique()[-test_dataset_size:][0]]
|
| 453 |
+
|
| 454 |
+
return fb_train_data,fb_test_data,item_dummay,store_dummay
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
if __name__=='__main__':
|
| 458 |
+
obj=Energy_DataLoader(r'D:\Ai Practices\Transformer Based Forecasting\stremlit app\LD2011_2014.txt')
|
| 459 |
+
obj.load()
|
| 460 |
+
|
src/model.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
import warnings
|
| 4 |
+
import lightning.pytorch as pl
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import torch
|
| 8 |
+
from prophet.serialize import model_to_json, model_from_json
|
| 9 |
+
from pytorch_forecasting import Baseline, TemporalFusionTransformer, TimeSeriesDataSet
|
| 10 |
+
from pytorch_forecasting.models.temporal_fusion_transformer.tuning import optimize_hyperparameters
|
| 11 |
+
|
| 12 |
+
# at beginning of the script
|
| 13 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 14 |
+
|
| 15 |
+
class Model_Load:
|
| 16 |
+
def __init__(self):
|
| 17 |
+
pass
|
| 18 |
+
def energy_model_load(self,model_option):
|
| 19 |
+
if model_option=='TFT':
|
| 20 |
+
best_model_path='models/consumer_final_10/lightning_logs/lightning_logs/version_0/checkpoints/epoch=5-step=49260.ckpt'
|
| 21 |
+
best_tft = TemporalFusionTransformer.load_from_checkpoint(best_model_path)
|
| 22 |
+
print('Model Load Sucessfully.')
|
| 23 |
+
return best_tft
|
| 24 |
+
elif model_option=='Prophet':
|
| 25 |
+
best_model_path='models/fb_energy_model.json'
|
| 26 |
+
with open(best_model_path, 'r') as fin:
|
| 27 |
+
model = model_from_json(fin.read())
|
| 28 |
+
return model
|
| 29 |
+
|
| 30 |
+
# elif model_option=='ten consumer':
|
| 31 |
+
# best_model_path='consumer_10/lightning_logs/lightning_logs/version_0/checkpoints/epoch=11-step=98544.ckpt'
|
| 32 |
+
# best_tft = TemporalFusionTransformer.load_from_checkpoint(best_model_path)
|
| 33 |
+
# print('Model Load Sucessfully.')
|
| 34 |
+
# elif model_option=='fifty consumer':
|
| 35 |
+
# raise Exception('Model not present')
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def store_model_load(self,model_option):
|
| 39 |
+
if model_option=='TFT':
|
| 40 |
+
# best_model_path="models/store_item_10_lead_1_v2/lightning_logs/lightning_logs/version_2/checkpoints/epoch=7-step=4472.ckpt"
|
| 41 |
+
best_model_path="models/store_item_10_lead_1_v3/lightning_logs/lightning_logs/version_0/checkpoints/epoch=7-step=4472.ckpt"
|
| 42 |
+
best_tft = TemporalFusionTransformer.load_from_checkpoint(best_model_path)
|
| 43 |
+
# best_tft = TemporalFusionTransformer()
|
| 44 |
+
# best_tft.load_state_dict(torch.load(best_model_path,map_location=torch.device('cpu')))
|
| 45 |
+
# best_tft.to('cpu')
|
| 46 |
+
print('Model Load Sucessfully.')
|
| 47 |
+
return best_tft
|
| 48 |
+
elif model_option=='Prophet':
|
| 49 |
+
best_model_path='models/fb_store_model_new.json'
|
| 50 |
+
with open(best_model_path, 'r') as fin:
|
| 51 |
+
model = model_from_json(fin.read())
|
| 52 |
+
return model
|
| 53 |
+
|
| 54 |
+
# elif model_option=='Item 50 TFT':
|
| 55 |
+
# raise Exception('Model not present')
|
| 56 |
+
# elif model_option=='FB Prophet':
|
| 57 |
+
# raise Exception('Model not present')
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
if __name__=='__main__':
|
| 63 |
+
obj=Model_Load()
|
| 64 |
+
obj.load()
|
| 65 |
+
|
src/prediction.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from sklearn.metrics import mean_absolute_error,mean_squared_error
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
|
| 5 |
+
def create_week_date_featues(df,date_column):
|
| 6 |
+
|
| 7 |
+
df['Month'] = pd.to_datetime(df[date_column]).dt.month
|
| 8 |
+
|
| 9 |
+
df['Day'] = pd.to_datetime(df[date_column]).dt.day
|
| 10 |
+
|
| 11 |
+
df['Dayofweek'] = pd.to_datetime(df[date_column]).dt.dayofweek
|
| 12 |
+
|
| 13 |
+
df['DayOfyear'] = pd.to_datetime(df[date_column]).dt.dayofyear
|
| 14 |
+
|
| 15 |
+
df['Week'] = pd.to_datetime(df[date_column]).dt.week
|
| 16 |
+
|
| 17 |
+
df['Quarter'] = pd.to_datetime(df[date_column]).dt.quarter
|
| 18 |
+
|
| 19 |
+
df['Is_month_start'] = np.where(pd.to_datetime(df[date_column]).dt.is_month_start,0,1)
|
| 20 |
+
|
| 21 |
+
df['Is_month_end'] = np.where(pd.to_datetime(df[date_column]).dt.is_month_end,0,1)
|
| 22 |
+
|
| 23 |
+
df['Is_quarter_start'] = np.where(pd.to_datetime(df[date_column]).dt.is_quarter_start,0,1)
|
| 24 |
+
|
| 25 |
+
df['Is_quarter_end'] = np.where(pd.to_datetime(df[date_column]).dt.is_quarter_end,0,1)
|
| 26 |
+
|
| 27 |
+
df['Is_year_start'] = np.where(pd.to_datetime(df[date_column]).dt.is_year_start,0,1)
|
| 28 |
+
|
| 29 |
+
df['Is_year_end'] = np.where(pd.to_datetime(df[date_column]).dt.is_year_end,0,1)
|
| 30 |
+
|
| 31 |
+
df['Semester'] = np.where(df[date_column].isin([1,2]),1,2)
|
| 32 |
+
|
| 33 |
+
df['Is_weekend'] = np.where(df[date_column].isin([5,6]),1,0)
|
| 34 |
+
|
| 35 |
+
df['Is_weekday'] = np.where(df[date_column].isin([0,1,2,3,4]),1,0)
|
| 36 |
+
|
| 37 |
+
df['Days_in_month'] = pd.to_datetime(df[date_column]).dt.days_in_month
|
| 38 |
+
|
| 39 |
+
return df
|
| 40 |
+
|
| 41 |
+
def val_prediction(validation,model:object,train_dataset:pd.DataFrame(),store_id:str='1',item_id:str='1'):
|
| 42 |
+
predictions = model.predict(validation.filter(lambda x: (x.store ==store_id) & (x.item ==item_id)),
|
| 43 |
+
return_y=True,
|
| 44 |
+
return_x=True,
|
| 45 |
+
trainer_kwargs=dict(accelerator="cpu"))
|
| 46 |
+
|
| 47 |
+
filter_train=train_dataset.loc[(train_dataset['store']==store_id) & (train_dataset['item']==item_id)].reset_index(drop=True)
|
| 48 |
+
# print(filter_train)
|
| 49 |
+
training_results=filter_train.iloc[-30:,:]
|
| 50 |
+
y=[float(i) for i in predictions.output[0]]
|
| 51 |
+
y_true=[float(i) for i in predictions.y[0][0]]
|
| 52 |
+
x=[int(i) for i in predictions[1]['decoder_time_idx'][0]]
|
| 53 |
+
training_results['prediction']=y
|
| 54 |
+
training_results['y_true']=y_true
|
| 55 |
+
training_results['x']=x
|
| 56 |
+
rmse=np.around(np.sqrt(mean_squared_error(training_results['Lead_1'],y)),2)
|
| 57 |
+
mae=np.around(mean_absolute_error(training_results['Lead_1'],y),2)
|
| 58 |
+
print(f" VAL DATA = Item ID : {item_id} :: MAE : {mae} :: RMSE : {rmse}")
|
| 59 |
+
return training_results
|
| 60 |
+
|
| 61 |
+
def test_prediction(model:object,train_dataset,test_dataset,earliest_time,max_encoder_length=120,store_id:str='1',item_id:str='1'):
|
| 62 |
+
#encoder data is the last lookback window: we get the last 1 week (168 datapoints) for all 5 consumers = 840 total datapoints
|
| 63 |
+
encoder_data = train_dataset[lambda x: x.days_from_start > x.days_from_start.max() - max_encoder_length]
|
| 64 |
+
last_data = train_dataset[lambda x: x.days_from_start == x.days_from_start.max()]
|
| 65 |
+
# decoder_data = pd.concat(
|
| 66 |
+
# [last_data.assign(date=lambda x: x.date + pd.offsets.DateOffset(i)) for i in range(1, 30 + 1)],
|
| 67 |
+
# ignore_index=True,
|
| 68 |
+
# )
|
| 69 |
+
|
| 70 |
+
# decoder_data["hours_from_start"] = (decoder_data["date"] - earliest_time).dt.seconds / 60 / 60 + (decoder_data["date"] - earliest_time).dt.days * 24
|
| 71 |
+
# decoder_data['hours_from_start'] = decoder_data['hours_from_start'].astype('int')
|
| 72 |
+
# decoder_data["hours_from_start"] += encoder_data["hours_from_start"].max() + 1 - decoder_data["hours_from_start"].min()
|
| 73 |
+
# # add time index consistent with "data"
|
| 74 |
+
# decoder_data["days_from_start"] = (decoder_data["date"] - earliest_time).apply(lambda x:x.days)
|
| 75 |
+
# decoder_data=create_week_date_featues(decoder_data,'date')
|
| 76 |
+
decoder_data=test_dataset.copy()
|
| 77 |
+
|
| 78 |
+
new_prediction_data = pd.concat([encoder_data, decoder_data], ignore_index=True)
|
| 79 |
+
filter_test=new_prediction_data.loc[(new_prediction_data['store']==store_id) & (new_prediction_data['item']==item_id)]
|
| 80 |
+
predictions = model.predict(filter_test,
|
| 81 |
+
return_y=True,
|
| 82 |
+
return_x=True,
|
| 83 |
+
trainer_kwargs=dict(accelerator="cpu"))
|
| 84 |
+
|
| 85 |
+
# print(filter_test)
|
| 86 |
+
testing_results=test_dataset.loc[(test_dataset['store']=='1') & (test_dataset['item']==item_id)]
|
| 87 |
+
y=[float(i) for i in predictions.output[0]]
|
| 88 |
+
y_true=[float(i) for i in predictions.y[0][0]]
|
| 89 |
+
x=[int(i) for i in predictions[1]['decoder_time_idx'][0]]
|
| 90 |
+
testing_results['prediction']=y
|
| 91 |
+
testing_results['y_true']=y_true
|
| 92 |
+
testing_results['x']=x
|
| 93 |
+
return testing_results
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
#-------------------------------------------------------------
|
| 98 |
+
|
| 99 |
+
def val_pred(model:object,train_dataset,validation,consumer_id:str='MT_001'):
|
| 100 |
+
predictions = model.predict(validation.filter(lambda x: (x.consumer_id ==consumer_id)),
|
| 101 |
+
return_y=True,
|
| 102 |
+
return_x=True,
|
| 103 |
+
trainer_kwargs=dict(accelerator="cpu"))
|
| 104 |
+
|
| 105 |
+
filter_train=train_dataset.loc[(train_dataset['consumer_id']==consumer_id)].reset_index(drop=True)
|
| 106 |
+
|
| 107 |
+
# print(filter_train)
|
| 108 |
+
# filter validation data
|
| 109 |
+
val_results=filter_train.iloc[-24:,:]
|
| 110 |
+
|
| 111 |
+
# prediction
|
| 112 |
+
y=[float(i) for i in predictions.output[0]]
|
| 113 |
+
# actual
|
| 114 |
+
y_true=[float(i) for i in predictions.y[0][0]]
|
| 115 |
+
# time idx
|
| 116 |
+
x=[int(i) for i in predictions[1]['decoder_time_idx'][0]]
|
| 117 |
+
# update into the validation results
|
| 118 |
+
val_results['prediction']=y
|
| 119 |
+
val_results['y_true']=y_true
|
| 120 |
+
val_results['x']=x
|
| 121 |
+
# RMSE & MAE for validation data
|
| 122 |
+
rmse=np.around(np.sqrt(mean_squared_error(val_results['Lead_1'],y)),2)
|
| 123 |
+
mae=np.around(mean_absolute_error(val_results['Lead_1'],y),2)
|
| 124 |
+
|
| 125 |
+
print(f" VAL DATA = Consumer ID : {consumer_id} :: MAE : {mae} :: RMSE : {rmse}")
|
| 126 |
+
return val_results
|
| 127 |
+
|
| 128 |
+
def test_pred(model:object,train_dataset,test_dataset,consumer_id:str='MT_001',max_encoder_length:int=168):
|
| 129 |
+
encoder_data = train_dataset[lambda x: x.hours_from_start > x.hours_from_start.max() - max_encoder_length]
|
| 130 |
+
last_data = train_dataset[lambda x: x.hours_from_start == x.hours_from_start.max()]
|
| 131 |
+
|
| 132 |
+
decoder_data=test_dataset.copy()
|
| 133 |
+
|
| 134 |
+
new_prediction_data = pd.concat([encoder_data, decoder_data], ignore_index=True)
|
| 135 |
+
|
| 136 |
+
filter_train=new_prediction_data.loc[ (new_prediction_data['consumer_id']==consumer_id)]
|
| 137 |
+
predictions = model.predict(filter_train,
|
| 138 |
+
return_y=True,
|
| 139 |
+
return_x=True,
|
| 140 |
+
trainer_kwargs=dict(accelerator="cpu"))
|
| 141 |
+
|
| 142 |
+
# print(filter_train)
|
| 143 |
+
testing_results=test_dataset.loc[(test_dataset['consumer_id']==consumer_id)]
|
| 144 |
+
|
| 145 |
+
y=[float(i) for i in predictions.output[0]]
|
| 146 |
+
y_true=[float(i) for i in predictions.y[0][0]]
|
| 147 |
+
x=[int(i) for i in predictions[1]['decoder_time_idx'][0]]
|
| 148 |
+
|
| 149 |
+
testing_results['prediction']=y
|
| 150 |
+
testing_results['y_true']=y_true
|
| 151 |
+
testing_results['x']=x
|
| 152 |
+
|
| 153 |
+
rmse=np.around(np.sqrt(mean_squared_error(testing_results['Lead_1'],y)),2)
|
| 154 |
+
mae=np.around(mean_absolute_error(testing_results['Lead_1'],y),2)
|
| 155 |
+
print(f"TEST DATA = Consumer ID : {consumer_id} :: MAE : {mae} :: RMSE : {rmse}")
|
| 156 |
+
return testing_results
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
|