Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import FAISS | |
| sample_words = ['apple', 'orange', 'rose', 'chocolate', 'pen', 'school', 'book', 'computer'] | |
| #Define the HuggingFaceEmbeddings model | |
| model_path = 'sentence-transformers/all-MiniLM-l6-v2' | |
| embeddings = HuggingFaceEmbeddings( | |
| model_name= model_path, | |
| model_kwargs={'device':'cpu'}, | |
| encode_kwargs={'normalize_embeddings': False} | |
| ) | |
| db = FAISS.from_texts(sample_words, embeddings) | |
| # UI | |
| st.header("Similar Word Search App") | |
| input_word = st.text_input("You: ", key= input) | |
| submit = st.button('Show me similar words') | |
| if submit: | |
| results = db.similarity_search(input_word) | |
| st.subheader("Top Words:") | |
| st.text(results[0].page_content) | |
| st.text(results[1].page_content) | |