Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class Erosion2d(nn.Module): | |
| def __init__(self, m=1): | |
| super(Erosion2d, self).__init__() | |
| self.m = m | |
| self.pad = [m, m, m, m] | |
| self.unfold = nn.Unfold(2 * m + 1, padding=0, stride=1) | |
| def forward(self, x): | |
| batch_size, c, h, w = x.shape | |
| x_pad = F.pad(x, pad=self.pad, mode='constant', value=1e9) | |
| for i in range(c): | |
| channel = self.unfold(x_pad[:, [i], :, :]) | |
| channel = torch.min(channel, dim=1, keepdim=True)[0] | |
| channel = channel.view([batch_size, 1, h, w]) | |
| x[:, [i], :, :] = channel | |
| return x | |
| class Dilation2d(nn.Module): | |
| def __init__(self, m=1): | |
| super(Dilation2d, self).__init__() | |
| self.m = m | |
| self.pad = [m, m, m, m] | |
| self.unfold = nn.Unfold(2 * m + 1, padding=0, stride=1) | |
| def forward(self, x): | |
| batch_size, c, h, w = x.shape | |
| x_pad = F.pad(x, pad=self.pad, mode='constant', value=-1e9) | |
| for i in range(c): | |
| channel = self.unfold(x_pad[:, [i], :, :]) | |
| channel = torch.max(channel, dim=1, keepdim=True)[0] | |
| channel = channel.view([batch_size, 1, h, w]) | |
| x[:, [i], :, :] = channel | |
| return x | |