Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,98 +1,51 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import
|
| 3 |
-
from peft import PeftModel
|
| 4 |
-
import torch
|
| 5 |
import os
|
| 6 |
|
| 7 |
-
HF_TOKEN = os.environ
|
| 8 |
|
| 9 |
-
# Load the base model and adapter for Model 1
|
| 10 |
-
base_model_name = "google/gemma-2b-it" # or the correct base model
|
| 11 |
-
adapter_model_name = "akhaliq/gemma-3-270m-gradio-coder-adapter"
|
| 12 |
|
| 13 |
-
# Initialize
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
base_model1 = AutoModelForCausalLM.from_pretrained(
|
| 17 |
-
base_model_name,
|
| 18 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 19 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
| 20 |
-
token=HF_TOKEN
|
| 21 |
-
)
|
| 22 |
-
model1 = PeftModel.from_pretrained(base_model1, adapter_model_name)
|
| 23 |
-
model1.eval()
|
| 24 |
|
| 25 |
-
|
| 26 |
-
print("Loading Model 2...")
|
| 27 |
-
model2_name = "google/gemma-2b-it" # Using gemma-2b-it as gemma-3-270m-it might not exist
|
| 28 |
-
tokenizer2 = AutoTokenizer.from_pretrained(model2_name, token=HF_TOKEN)
|
| 29 |
-
model2 = AutoModelForCausalLM.from_pretrained(
|
| 30 |
-
model2_name,
|
| 31 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 32 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
| 33 |
-
token=HF_TOKEN
|
| 34 |
-
)
|
| 35 |
-
model2.eval()
|
| 36 |
-
|
| 37 |
-
def generate_code(user_input, model, tokenizer, model_name="Model"):
|
| 38 |
"""
|
| 39 |
-
Generate code based on user input using the selected model
|
| 40 |
"""
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
#
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
)
|
| 62 |
-
|
| 63 |
-
# Decode the output
|
| 64 |
-
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 65 |
-
|
| 66 |
-
# Extract only the model's response
|
| 67 |
-
if "<start_of_turn>model" in generated_text:
|
| 68 |
-
response = generated_text.split("<start_of_turn>model")[-1].strip()
|
| 69 |
-
elif user_input in generated_text:
|
| 70 |
-
response = generated_text.split(user_input)[-1].strip()
|
| 71 |
else:
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
return response
|
| 78 |
|
| 79 |
def generate_both(user_input):
|
| 80 |
"""
|
| 81 |
Generate code from both models for comparison
|
| 82 |
"""
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
try:
|
| 87 |
-
output1 = generate_code(user_input, model1, tokenizer1, "Model 1 (Adapter)")
|
| 88 |
-
except Exception as e:
|
| 89 |
-
output1 = f"Error with Model 1: {str(e)}"
|
| 90 |
-
|
| 91 |
-
try:
|
| 92 |
-
output2 = generate_code(user_input, model2, tokenizer2, "Model 2 (Base)")
|
| 93 |
-
except Exception as e:
|
| 94 |
-
output2 = f"Error with Model 2: {str(e)}"
|
| 95 |
-
|
| 96 |
return output1, output2
|
| 97 |
|
| 98 |
# Create the Gradio interface
|
|
@@ -102,8 +55,8 @@ with gr.Blocks(title="Text to Code Generator - Model Comparison", theme=gr.theme
|
|
| 102 |
# π Text to Code Generator - Model Comparison
|
| 103 |
|
| 104 |
Compare code generation from two different Gemma models:
|
| 105 |
-
- **Model 1**:
|
| 106 |
-
- **Model 2**:
|
| 107 |
|
| 108 |
Simply describe what you want to build, and see how each model responds!
|
| 109 |
"""
|
|
@@ -131,7 +84,6 @@ with gr.Blocks(title="Text to Code Generator - Model Comparison", theme=gr.theme
|
|
| 131 |
["Create a React component for a todo list item"],
|
| 132 |
["Write a SQL query to find the top 5 customers by total purchase amount"],
|
| 133 |
["Create a Python class for a bank account with deposit and withdraw methods"],
|
| 134 |
-
["Build a simple Gradio interface for text summarization"],
|
| 135 |
],
|
| 136 |
inputs=input_text,
|
| 137 |
label="Example Prompts"
|
|
@@ -141,27 +93,31 @@ with gr.Blocks(title="Text to Code Generator - Model Comparison", theme=gr.theme
|
|
| 141 |
# Output section - Two columns for comparison
|
| 142 |
with gr.Row():
|
| 143 |
with gr.Column():
|
| 144 |
-
gr.Markdown("### Model 1:
|
| 145 |
output_code1 = gr.Code(
|
| 146 |
label="Generated Code (Model 1)",
|
| 147 |
language="python",
|
| 148 |
lines=15,
|
| 149 |
interactive=True,
|
| 150 |
-
|
|
|
|
|
|
|
| 151 |
)
|
| 152 |
-
copy_btn1 = gr.Button("π Copy Code",
|
| 153 |
|
| 154 |
with gr.Column():
|
| 155 |
-
gr.Markdown("### Model 2:
|
| 156 |
output_code2 = gr.Code(
|
| 157 |
label="Generated Code (Model 2)",
|
| 158 |
language="python",
|
| 159 |
lines=15,
|
| 160 |
interactive=True,
|
| 161 |
-
|
|
|
|
|
|
|
| 162 |
)
|
| 163 |
-
copy_btn2 = gr.Button("π Copy Code",
|
| 164 |
-
|
| 165 |
# Add event handlers
|
| 166 |
generate_btn.click(
|
| 167 |
fn=generate_both,
|
|
@@ -178,33 +134,26 @@ with gr.Blocks(title="Text to Code Generator - Model Comparison", theme=gr.theme
|
|
| 178 |
|
| 179 |
# Copy functionality for both outputs
|
| 180 |
copy_btn1.click(
|
| 181 |
-
None,
|
| 182 |
inputs=output_code1,
|
| 183 |
outputs=None,
|
| 184 |
js="""
|
| 185 |
(code) => {
|
| 186 |
navigator.clipboard.writeText(code);
|
| 187 |
-
|
| 188 |
-
const originalText = btn.textContent;
|
| 189 |
-
btn.textContent = 'β Copied!';
|
| 190 |
-
setTimeout(() => btn.textContent = originalText, 2000);
|
| 191 |
return null;
|
| 192 |
}
|
| 193 |
"""
|
| 194 |
)
|
| 195 |
|
| 196 |
copy_btn2.click(
|
| 197 |
-
None,
|
| 198 |
inputs=output_code2,
|
| 199 |
outputs=None,
|
| 200 |
js="""
|
| 201 |
(code) => {
|
| 202 |
navigator.clipboard.writeText(code);
|
| 203 |
-
|
| 204 |
-
const btn = btns[1];
|
| 205 |
-
const originalText = btn.textContent;
|
| 206 |
-
btn.textContent = 'β Copied!';
|
| 207 |
-
setTimeout(() => btn.textContent = originalText, 2000);
|
| 208 |
return null;
|
| 209 |
}
|
| 210 |
"""
|
|
@@ -219,7 +168,9 @@ with gr.Blocks(title="Text to Code Generator - Model Comparison", theme=gr.theme
|
|
| 219 |
- Include details about inputs, outputs, and edge cases
|
| 220 |
- You can edit the generated code directly in the output box
|
| 221 |
|
| 222 |
-
**
|
|
|
|
|
|
|
| 223 |
"""
|
| 224 |
)
|
| 225 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
|
|
|
|
|
|
| 3 |
import os
|
| 4 |
|
| 5 |
+
HF_TOKEN = os.environ["HF_TOKEN"]
|
| 6 |
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Initialize the text generation pipelines
|
| 9 |
+
pipe = pipeline("text-generation", model="akhaliq/MyGemmaGradioCoder")
|
| 10 |
+
pipe2 = pipeline("text-generation", model="google/gemma-3-270m-it", token=HF_TOKEN)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
def generate_code(user_input, model_choice="Model 1"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
"""
|
| 14 |
+
Generate code based on user input using the selected Gemma model
|
| 15 |
"""
|
| 16 |
+
messages = [
|
| 17 |
+
{"role": "user", "content": user_input},
|
| 18 |
+
]
|
| 19 |
+
|
| 20 |
+
# Select pipeline based on model choice
|
| 21 |
+
selected_pipe = pipe if model_choice == "Model 1 (MyGemmaGradioCoder)" else pipe2
|
| 22 |
+
|
| 23 |
+
# Generate response from the model
|
| 24 |
+
response = selected_pipe(messages, max_new_tokens=512, temperature=0.7, do_sample=True)
|
| 25 |
+
|
| 26 |
+
# Extract the generated text from the response
|
| 27 |
+
generated_text = response[0]['generated_text']
|
| 28 |
+
|
| 29 |
+
# If the response contains the full conversation, extract just the assistant's response
|
| 30 |
+
if isinstance(generated_text, list):
|
| 31 |
+
# Handle conversation format
|
| 32 |
+
for msg in generated_text:
|
| 33 |
+
if msg.get('role') == 'assistant':
|
| 34 |
+
return msg.get('content', '')
|
| 35 |
+
# If no assistant message found, return the last message content
|
| 36 |
+
return generated_text[-1].get('content', '') if generated_text else ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
else:
|
| 38 |
+
# Handle string format - try to extract the code after the user input
|
| 39 |
+
if user_input in generated_text:
|
| 40 |
+
return generated_text.split(user_input)[-1].strip()
|
| 41 |
+
return generated_text
|
|
|
|
|
|
|
| 42 |
|
| 43 |
def generate_both(user_input):
|
| 44 |
"""
|
| 45 |
Generate code from both models for comparison
|
| 46 |
"""
|
| 47 |
+
output1 = generate_code(user_input, "Model 1 (MyGemmaGradioCoder)")
|
| 48 |
+
output2 = generate_code(user_input, "Model 2 (gemma-3-270m-it)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
return output1, output2
|
| 50 |
|
| 51 |
# Create the Gradio interface
|
|
|
|
| 55 |
# π Text to Code Generator - Model Comparison
|
| 56 |
|
| 57 |
Compare code generation from two different Gemma models:
|
| 58 |
+
- **Model 1**: akhaliq/MyGemmaGradioCoder
|
| 59 |
+
- **Model 2**: google/gemma-3-270m-it
|
| 60 |
|
| 61 |
Simply describe what you want to build, and see how each model responds!
|
| 62 |
"""
|
|
|
|
| 84 |
["Create a React component for a todo list item"],
|
| 85 |
["Write a SQL query to find the top 5 customers by total purchase amount"],
|
| 86 |
["Create a Python class for a bank account with deposit and withdraw methods"],
|
|
|
|
| 87 |
],
|
| 88 |
inputs=input_text,
|
| 89 |
label="Example Prompts"
|
|
|
|
| 93 |
# Output section - Two columns for comparison
|
| 94 |
with gr.Row():
|
| 95 |
with gr.Column():
|
| 96 |
+
gr.Markdown("### Model 1: MyGemmaGradioCoder")
|
| 97 |
output_code1 = gr.Code(
|
| 98 |
label="Generated Code (Model 1)",
|
| 99 |
language="python",
|
| 100 |
lines=15,
|
| 101 |
interactive=True,
|
| 102 |
+
show_line_numbers=True,
|
| 103 |
+
wrap_lines=True,
|
| 104 |
+
autocomplete=True
|
| 105 |
)
|
| 106 |
+
copy_btn1 = gr.Button("π Copy Code", scale=1)
|
| 107 |
|
| 108 |
with gr.Column():
|
| 109 |
+
gr.Markdown("### Model 2: gemma-3-270m-it")
|
| 110 |
output_code2 = gr.Code(
|
| 111 |
label="Generated Code (Model 2)",
|
| 112 |
language="python",
|
| 113 |
lines=15,
|
| 114 |
interactive=True,
|
| 115 |
+
show_line_numbers=True,
|
| 116 |
+
wrap_lines=True,
|
| 117 |
+
autocomplete=True
|
| 118 |
)
|
| 119 |
+
copy_btn2 = gr.Button("π Copy Code", scale=1)
|
| 120 |
+
|
| 121 |
# Add event handlers
|
| 122 |
generate_btn.click(
|
| 123 |
fn=generate_both,
|
|
|
|
| 134 |
|
| 135 |
# Copy functionality for both outputs
|
| 136 |
copy_btn1.click(
|
| 137 |
+
fn=None,
|
| 138 |
inputs=output_code1,
|
| 139 |
outputs=None,
|
| 140 |
js="""
|
| 141 |
(code) => {
|
| 142 |
navigator.clipboard.writeText(code);
|
| 143 |
+
alert('Code from Model 1 copied to clipboard!');
|
|
|
|
|
|
|
|
|
|
| 144 |
return null;
|
| 145 |
}
|
| 146 |
"""
|
| 147 |
)
|
| 148 |
|
| 149 |
copy_btn2.click(
|
| 150 |
+
fn=None,
|
| 151 |
inputs=output_code2,
|
| 152 |
outputs=None,
|
| 153 |
js="""
|
| 154 |
(code) => {
|
| 155 |
navigator.clipboard.writeText(code);
|
| 156 |
+
alert('Code from Model 2 copied to clipboard!');
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
return null;
|
| 158 |
}
|
| 159 |
"""
|
|
|
|
| 168 |
- Include details about inputs, outputs, and edge cases
|
| 169 |
- You can edit the generated code directly in the output box
|
| 170 |
|
| 171 |
+
**Models:**
|
| 172 |
+
- [akhaliq/MyGemmaGradioCoder](https://huggingface.co/akhaliq/MyGemmaGradioCoder)
|
| 173 |
+
- [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it)
|
| 174 |
"""
|
| 175 |
)
|
| 176 |
|