Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,12 +11,27 @@ from diffusers.utils import load_image, export_to_video
|
|
| 11 |
from PIL import Image
|
| 12 |
from huggingface_hub import hf_hub_download
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 16 |
-
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=
|
| 17 |
)
|
| 18 |
-
pipe.to(
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
max_64_bit_int = 2**63 - 1
|
| 21 |
|
| 22 |
# Function to sample video from the input image
|
|
@@ -29,7 +44,6 @@ def sample(
|
|
| 29 |
version: str = "svd_xt",
|
| 30 |
cond_aug: float = 0.02,
|
| 31 |
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
| 32 |
-
device: str = "cuda",
|
| 33 |
output_folder: str = "outputs",
|
| 34 |
):
|
| 35 |
if image.mode == "RGBA":
|
|
@@ -42,20 +56,30 @@ def sample(
|
|
| 42 |
os.makedirs(output_folder, exist_ok=True)
|
| 43 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 44 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
export_to_video(frames, video_path, fps=fps_id)
|
| 47 |
torch.manual_seed(seed)
|
| 48 |
return video_path, seed
|
| 49 |
|
| 50 |
-
# Function to resize the uploaded image
|
| 51 |
def resize_image(image, output_size=(1024, 576)):
|
|
|
|
| 52 |
target_aspect = output_size[0] / output_size[1]
|
| 53 |
image_aspect = image.width / image.height
|
| 54 |
|
| 55 |
if image_aspect > target_aspect:
|
| 56 |
new_height = output_size[1]
|
| 57 |
new_width = int(new_height * image_aspect)
|
| 58 |
-
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 59 |
left = (new_width - output_size[0]) / 2
|
| 60 |
top = 0
|
| 61 |
right = (new_width + output_size[0]) / 2
|
|
@@ -63,7 +87,7 @@ def resize_image(image, output_size=(1024, 576)):
|
|
| 63 |
else:
|
| 64 |
new_width = output_size[0]
|
| 65 |
new_height = int(new_width / image_aspect)
|
| 66 |
-
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
|
| 67 |
left = 0
|
| 68 |
top = (new_height - output_size[1]) / 2
|
| 69 |
right = output_size[0]
|
|
@@ -75,39 +99,50 @@ def resize_image(image, output_size=(1024, 576)):
|
|
| 75 |
# Dynamically load image files from the 'images' directory
|
| 76 |
def get_example_images():
|
| 77 |
image_dir = "images/"
|
|
|
|
|
|
|
| 78 |
image_files = glob(os.path.join(image_dir, "*.png")) + glob(os.path.join(image_dir, "*.jpg"))
|
| 79 |
return image_files
|
| 80 |
|
| 81 |
# Gradio interface setup
|
| 82 |
with gr.Blocks() as demo:
|
| 83 |
-
gr.Markdown('''# Stable Video Diffusion
|
| 84 |
-
|
| 85 |
|
| 86 |
with gr.Row():
|
| 87 |
with gr.Column():
|
| 88 |
-
image = gr.Image(label="Upload
|
| 89 |
-
generate_btn = gr.Button("Generate")
|
| 90 |
-
video = gr.Video()
|
| 91 |
|
| 92 |
-
with gr.Accordion("Advanced
|
| 93 |
-
seed = gr.Slider(label="Seed", value=42,
|
| 94 |
-
randomize_seed = gr.Checkbox(label="Randomize
|
| 95 |
-
motion_bucket_id = gr.Slider(label="Motion
|
| 96 |
-
fps_id = gr.Slider(label="Frames
|
| 97 |
|
|
|
|
| 98 |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
# Dynamically load examples from the filesystem
|
| 102 |
example_images = get_example_images()
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
| 110 |
|
| 111 |
if __name__ == "__main__":
|
| 112 |
demo.queue(max_size=20)
|
| 113 |
-
demo.launch(share=True)
|
|
|
|
| 11 |
from PIL import Image
|
| 12 |
from huggingface_hub import hf_hub_download
|
| 13 |
|
| 14 |
+
# ------------------------------------------------------------------------
|
| 15 |
+
# FIX: Adapt to the available hardware (GPU or CPU)
|
| 16 |
+
# ------------------------------------------------------------------------
|
| 17 |
|
| 18 |
+
# Automatically detect the device and select the appropriate data type.
|
| 19 |
+
# This makes the code runnable on machines with or without a dedicated NVIDIA GPU.
|
| 20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
torch_dtype = torch.float16 if device == "cuda" else torch.float32
|
| 22 |
+
|
| 23 |
+
# Load the pipeline onto the detected device.
|
| 24 |
pipe = StableVideoDiffusionPipeline.from_pretrained(
|
| 25 |
+
"stabilityai/stable-video-diffusion-img2vid-xt", torch_dtype=torch_dtype, variant="fp16"
|
| 26 |
)
|
| 27 |
+
pipe.to(device)
|
| 28 |
+
|
| 29 |
+
# Apply torch.compile for optimization only if on a GPU, as it's most effective there.
|
| 30 |
+
if device == "cuda":
|
| 31 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
| 32 |
+
|
| 33 |
+
# ------------------------------------------------------------------------
|
| 34 |
+
|
| 35 |
max_64_bit_int = 2**63 - 1
|
| 36 |
|
| 37 |
# Function to sample video from the input image
|
|
|
|
| 44 |
version: str = "svd_xt",
|
| 45 |
cond_aug: float = 0.02,
|
| 46 |
decoding_t: int = 3, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
|
|
|
| 47 |
output_folder: str = "outputs",
|
| 48 |
):
|
| 49 |
if image.mode == "RGBA":
|
|
|
|
| 56 |
os.makedirs(output_folder, exist_ok=True)
|
| 57 |
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
| 58 |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
| 59 |
+
|
| 60 |
+
frames = pipe(
|
| 61 |
+
image,
|
| 62 |
+
decode_chunk_size=decoding_t,
|
| 63 |
+
generator=generator,
|
| 64 |
+
motion_bucket_id=motion_bucket_id,
|
| 65 |
+
noise_aug_strength=0.1,
|
| 66 |
+
num_frames=25
|
| 67 |
+
).frames[0]
|
| 68 |
+
|
| 69 |
export_to_video(frames, video_path, fps=fps_id)
|
| 70 |
torch.manual_seed(seed)
|
| 71 |
return video_path, seed
|
| 72 |
|
| 73 |
+
# Function to resize the uploaded image to the model's optimal input size
|
| 74 |
def resize_image(image, output_size=(1024, 576)):
|
| 75 |
+
# Resizes and crops the image to a 16:9 aspect ratio.
|
| 76 |
target_aspect = output_size[0] / output_size[1]
|
| 77 |
image_aspect = image.width / image.height
|
| 78 |
|
| 79 |
if image_aspect > target_aspect:
|
| 80 |
new_height = output_size[1]
|
| 81 |
new_width = int(new_height * image_aspect)
|
| 82 |
+
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 83 |
left = (new_width - output_size[0]) / 2
|
| 84 |
top = 0
|
| 85 |
right = (new_width + output_size[0]) / 2
|
|
|
|
| 87 |
else:
|
| 88 |
new_width = output_size[0]
|
| 89 |
new_height = int(new_width / image_aspect)
|
| 90 |
+
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 91 |
left = 0
|
| 92 |
top = (new_height - output_size[1]) / 2
|
| 93 |
right = output_size[0]
|
|
|
|
| 99 |
# Dynamically load image files from the 'images' directory
|
| 100 |
def get_example_images():
|
| 101 |
image_dir = "images/"
|
| 102 |
+
if not os.path.exists(image_dir):
|
| 103 |
+
os.makedirs(image_dir)
|
| 104 |
image_files = glob(os.path.join(image_dir, "*.png")) + glob(os.path.join(image_dir, "*.jpg"))
|
| 105 |
return image_files
|
| 106 |
|
| 107 |
# Gradio interface setup
|
| 108 |
with gr.Blocks() as demo:
|
| 109 |
+
gr.Markdown('''# Stable Video Diffusion
|
| 110 |
+
#### Generate short videos from a single image.''')
|
| 111 |
|
| 112 |
with gr.Row():
|
| 113 |
with gr.Column():
|
| 114 |
+
image = gr.Image(label="Upload Your Image", type="pil")
|
| 115 |
+
generate_btn = gr.Button("Generate Video", variant="primary")
|
| 116 |
+
video = gr.Video(label="Generated Video")
|
| 117 |
|
| 118 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 119 |
+
seed = gr.Slider(label="Seed", value=42, minimum=0, maximum=max_64_bit_int, step=1)
|
| 120 |
+
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
| 121 |
+
motion_bucket_id = gr.Slider(label="Motion Bucket ID", info="Controls the amount of motion in the video.", value=127, minimum=1, maximum=255)
|
| 122 |
+
fps_id = gr.Slider(label="Frames Per Second (FPS)", info="Adjusts the playback speed of the video.", value=7, minimum=5, maximum=30)
|
| 123 |
|
| 124 |
+
# When a new image is uploaded, process it immediately
|
| 125 |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False)
|
| 126 |
+
|
| 127 |
+
# When the generate button is clicked, run the sampling function
|
| 128 |
+
generate_btn.click(
|
| 129 |
+
fn=sample,
|
| 130 |
+
inputs=[image, seed, randomize_seed, motion_bucket_id, fps_id],
|
| 131 |
+
outputs=[video, seed],
|
| 132 |
+
api_name="video"
|
| 133 |
+
)
|
| 134 |
|
| 135 |
# Dynamically load examples from the filesystem
|
| 136 |
example_images = get_example_images()
|
| 137 |
+
if example_images:
|
| 138 |
+
gr.Examples(
|
| 139 |
+
examples=example_images,
|
| 140 |
+
inputs=image,
|
| 141 |
+
outputs=[video, seed],
|
| 142 |
+
fn=lambda img: sample(resize_image(Image.open(img))), # Resize example images before sampling
|
| 143 |
+
cache_examples=True,
|
| 144 |
+
)
|
| 145 |
|
| 146 |
if __name__ == "__main__":
|
| 147 |
demo.queue(max_size=20)
|
| 148 |
+
demo.launch(share=True)
|