Spaces:
Sleeping
Sleeping
Implement modular RAG email assistant architecture
Browse files- Add modular src/ structure with all components
- Implement document processing (loader, chunker)
- Implement OpenSearch indexing with hybrid retrieval
- Implement PydanticAI agents (intent, composer, fact checker)
- Implement pipeline orchestrator
- Add Gradio UI with draft refinement
- Create document ingestion script
- Update dependencies and configuration
- Add comprehensive documentation (README, QUICKSTART, CLAUDE.md)
- .env.example +30 -0
- .gitignore +3 -0
- CLAUDE.md +17 -9
- QUICKSTART.md +116 -0
- README.md +256 -16
- app.py +12 -62
- requirements.txt +29 -52
- scripts/__init__.py +1 -0
- scripts/ingest_documents.py +104 -0
- src/__init__.py +3 -0
- src/agents/__init__.py +7 -0
- src/agents/composer_agent.py +155 -0
- src/agents/fact_checker_agent.py +159 -0
- src/agents/intent_agent.py +100 -0
- src/config.py +141 -0
- src/document_processing/__init__.py +6 -0
- src/document_processing/chunker.py +78 -0
- src/document_processing/loader.py +65 -0
- src/indexing/__init__.py +6 -0
- src/indexing/indexer.py +106 -0
- src/indexing/opensearch_client.py +167 -0
- src/pipeline/__init__.py +5 -0
- src/pipeline/orchestrator.py +192 -0
- src/retrieval/__init__.py +5 -0
- src/retrieval/hybrid_retriever.py +201 -0
- src/ui/__init__.py +5 -0
- src/ui/gradio_app.py +285 -0
.env.example
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# OpenAI Configuration
|
| 2 |
+
OPENAI_API_KEY=your_openai_api_key_here
|
| 3 |
+
LLM_MODEL=gpt-4o
|
| 4 |
+
EMBEDDING_MODEL=text-embedding-3-small
|
| 5 |
+
LLM_TEMPERATURE=0.7
|
| 6 |
+
LLM_MAX_TOKENS=2000
|
| 7 |
+
|
| 8 |
+
# OpenSearch Configuration
|
| 9 |
+
OPENSEARCH_HOST=localhost
|
| 10 |
+
OPENSEARCH_PORT=9200
|
| 11 |
+
OPENSEARCH_USER=admin
|
| 12 |
+
OPENSEARCH_PASSWORD=your_password_here
|
| 13 |
+
OPENSEARCH_USE_SSL=true
|
| 14 |
+
OPENSEARCH_VERIFY_CERTS=false
|
| 15 |
+
INDEX_NAME=bfh_admin_docs
|
| 16 |
+
|
| 17 |
+
# Document Processing Configuration
|
| 18 |
+
DOCUMENTS_PATH=assets/markdown
|
| 19 |
+
CHUNK_SIZE=300
|
| 20 |
+
CHUNK_OVERLAP=50
|
| 21 |
+
MIN_CHUNK_SIZE=100
|
| 22 |
+
|
| 23 |
+
# Retrieval Configuration
|
| 24 |
+
RETRIEVAL_TOP_K=5
|
| 25 |
+
BM25_WEIGHT=0.5
|
| 26 |
+
VECTOR_WEIGHT=0.5
|
| 27 |
+
MIN_RELEVANCE_SCORE=0.3
|
| 28 |
+
|
| 29 |
+
# Application Configuration
|
| 30 |
+
DEBUG=false
|
.gitignore
CHANGED
|
@@ -142,6 +142,9 @@ gradio_cached_examples/
|
|
| 142 |
flagged/
|
| 143 |
*.db
|
| 144 |
|
|
|
|
|
|
|
|
|
|
| 145 |
# IDE
|
| 146 |
.vscode/
|
| 147 |
.idea/
|
|
|
|
| 142 |
flagged/
|
| 143 |
*.db
|
| 144 |
|
| 145 |
+
# Baseline reference file
|
| 146 |
+
rag_email_assistant_haystack_2_pydantic_ai_gradio_modular_2025_baseline.py
|
| 147 |
+
|
| 148 |
# IDE
|
| 149 |
.vscode/
|
| 150 |
.idea/
|
CLAUDE.md
CHANGED
|
@@ -6,14 +6,16 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
|
|
| 6 |
|
| 7 |
This is a RAG (Retrieval-Augmented Generation) Email Assistant system designed for university administrative staff at BFH (Bern University of Applied Sciences). The system uses Haystack 2 for document processing and retrieval, PydanticAI for multi-agent orchestration, and Gradio for the user interface.
|
| 8 |
|
| 9 |
-
**Current Status**: The project
|
| 10 |
|
| 11 |
## Key Files
|
| 12 |
|
| 13 |
-
- **[rag_email_assistant_haystack_2_pydantic_ai_gradio_modular_2025_baseline.py](rag_email_assistant_haystack_2_pydantic_ai_gradio_modular_2025_baseline.py)**: Complete baseline implementation containing all code for the system. This file has comments indicating how to split it into modules.
|
| 14 |
- **[docs/RAG_Email_Assistant_Specifications_v1.0.md](docs/RAG_Email_Assistant_Specifications_v1.0.md)**: Comprehensive specification document defining architecture, components, and implementation details.
|
| 15 |
-
- **[app.py](app.py)**:
|
| 16 |
-
- **
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
## Architecture
|
| 19 |
|
|
@@ -28,9 +30,9 @@ The system follows a multi-agent RAG architecture with three main stages:
|
|
| 28 |
|
| 29 |
3. **Gradio UI**: Interactive interface for composing and refining email responses.
|
| 30 |
|
| 31 |
-
###
|
| 32 |
|
| 33 |
-
|
| 34 |
```
|
| 35 |
src/
|
| 36 |
βββ config.py # Configuration management
|
|
@@ -62,11 +64,17 @@ src/
|
|
| 62 |
|
| 63 |
### Running the Application
|
| 64 |
```bash
|
| 65 |
-
#
|
|
|
|
|
|
|
|
|
|
| 66 |
python -m src.ui.gradio_app
|
|
|
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
| 70 |
```
|
| 71 |
|
| 72 |
### Environment Setup
|
|
|
|
| 6 |
|
| 7 |
This is a RAG (Retrieval-Augmented Generation) Email Assistant system designed for university administrative staff at BFH (Bern University of Applied Sciences). The system uses Haystack 2 for document processing and retrieval, PydanticAI for multi-agent orchestration, and Gradio for the user interface.
|
| 8 |
|
| 9 |
+
**Current Status**: The project has been fully implemented with a modular architecture. The baseline reference file is kept for reference but the production code is in the `src/` directory.
|
| 10 |
|
| 11 |
## Key Files
|
| 12 |
|
|
|
|
| 13 |
- **[docs/RAG_Email_Assistant_Specifications_v1.0.md](docs/RAG_Email_Assistant_Specifications_v1.0.md)**: Comprehensive specification document defining architecture, components, and implementation details.
|
| 14 |
+
- **[app.py](app.py)**: Main entry point for Hugging Face Spaces deployment.
|
| 15 |
+
- **[src/](src/)**: Production implementation with modular architecture.
|
| 16 |
+
- **[scripts/ingest_documents.py](scripts/ingest_documents.py)**: Script to load, chunk, and index documents.
|
| 17 |
+
- **[assets/markdown/](assets/markdown/)**: Directory containing administrative documents in markdown format (forms, information sheets) that serve as the knowledge base.
|
| 18 |
+
- **rag_email_assistant_haystack_2_pydantic_ai_gradio_modular_2025_baseline.py**: Reference baseline (gitignored).
|
| 19 |
|
| 20 |
## Architecture
|
| 21 |
|
|
|
|
| 30 |
|
| 31 |
3. **Gradio UI**: Interactive interface for composing and refining email responses.
|
| 32 |
|
| 33 |
+
### Module Structure
|
| 34 |
|
| 35 |
+
The implemented modular structure:
|
| 36 |
```
|
| 37 |
src/
|
| 38 |
βββ config.py # Configuration management
|
|
|
|
| 64 |
|
| 65 |
### Running the Application
|
| 66 |
```bash
|
| 67 |
+
# Main entry point (for Hugging Face Spaces and local):
|
| 68 |
+
python app.py
|
| 69 |
+
|
| 70 |
+
# Or run the UI module directly:
|
| 71 |
python -m src.ui.gradio_app
|
| 72 |
+
```
|
| 73 |
|
| 74 |
+
### Document Ingestion
|
| 75 |
+
```bash
|
| 76 |
+
# Index markdown documents before first run:
|
| 77 |
+
python scripts/ingest_documents.py
|
| 78 |
```
|
| 79 |
|
| 80 |
### Environment Setup
|
QUICKSTART.md
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Quick Start Guide
|
| 2 |
+
|
| 3 |
+
## Prerequisites
|
| 4 |
+
|
| 5 |
+
1. **Python 3.10+** installed
|
| 6 |
+
2. **OpenSearch instance** running with k-NN plugin enabled
|
| 7 |
+
3. **OpenAI API key**
|
| 8 |
+
|
| 9 |
+
## Setup (5 minutes)
|
| 10 |
+
|
| 11 |
+
### 1. Install Dependencies
|
| 12 |
+
|
| 13 |
+
```bash
|
| 14 |
+
pip install -r requirements.txt
|
| 15 |
+
```
|
| 16 |
+
|
| 17 |
+
### 2. Configure Environment
|
| 18 |
+
|
| 19 |
+
```bash
|
| 20 |
+
# Copy the example environment file
|
| 21 |
+
cp .env.example .env
|
| 22 |
+
|
| 23 |
+
# Edit .env and add your credentials
|
| 24 |
+
nano .env # or use your preferred editor
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
**Required variables:**
|
| 28 |
+
- `OPENAI_API_KEY` - Your OpenAI API key
|
| 29 |
+
- `OPENSEARCH_HOST` - OpenSearch host (e.g., localhost)
|
| 30 |
+
- `OPENSEARCH_PORT` - OpenSearch port (e.g., 9200)
|
| 31 |
+
- `OPENSEARCH_USER` - OpenSearch username
|
| 32 |
+
- `OPENSEARCH_PASSWORD` - OpenSearch password
|
| 33 |
+
|
| 34 |
+
### 3. Index Documents
|
| 35 |
+
|
| 36 |
+
```bash
|
| 37 |
+
python scripts/ingest_documents.py
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
This will:
|
| 41 |
+
- Load markdown documents from `assets/markdown/`
|
| 42 |
+
- Chunk them semantically
|
| 43 |
+
- Generate embeddings
|
| 44 |
+
- Index in OpenSearch
|
| 45 |
+
|
| 46 |
+
Expected output:
|
| 47 |
+
```
|
| 48 |
+
Successfully indexed X document chunks
|
| 49 |
+
Total documents in index: X
|
| 50 |
+
β
Document ingestion completed successfully!
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
### 4. Run the Application
|
| 54 |
+
|
| 55 |
+
```bash
|
| 56 |
+
python app.py
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
The Gradio interface will launch at `http://localhost:7860`
|
| 60 |
+
|
| 61 |
+
## Usage
|
| 62 |
+
|
| 63 |
+
1. **Enter a student query** (e.g., "Wie kann ich mich exmatrikulieren?")
|
| 64 |
+
2. **Click "Generate Email Draft"**
|
| 65 |
+
3. **Review the results:**
|
| 66 |
+
- Intent analysis
|
| 67 |
+
- Email draft (subject + body)
|
| 68 |
+
- Fact check results
|
| 69 |
+
- Source documents used
|
| 70 |
+
4. **Refine if needed** by providing feedback
|
| 71 |
+
|
| 72 |
+
## Example Queries
|
| 73 |
+
|
| 74 |
+
German:
|
| 75 |
+
- "Wie kann ich mich exmatrikulieren?"
|
| 76 |
+
- "Was kostet eine NamensΓ€nderung?"
|
| 77 |
+
- "Ich mΓΆchte ein Modul zurΓΌckziehen. Was muss ich beachten?"
|
| 78 |
+
- "Welche Fristen gibt es fΓΌr die Beurlaubung?"
|
| 79 |
+
|
| 80 |
+
English:
|
| 81 |
+
- "How can I withdraw from the university?"
|
| 82 |
+
- "What are the fees for changing my name?"
|
| 83 |
+
- "I want to take a leave of absence. What do I need to know?"
|
| 84 |
+
|
| 85 |
+
## Troubleshooting
|
| 86 |
+
|
| 87 |
+
### Cannot connect to OpenSearch
|
| 88 |
+
- Check that OpenSearch is running: `curl -X GET "localhost:9200"`
|
| 89 |
+
- Verify credentials in `.env`
|
| 90 |
+
- Check firewall settings
|
| 91 |
+
|
| 92 |
+
### No documents indexed
|
| 93 |
+
- Verify markdown files exist in `assets/markdown/`
|
| 94 |
+
- Check OpenSearch index: `curl -X GET "localhost:9200/_cat/indices"`
|
| 95 |
+
- Review ingestion script logs
|
| 96 |
+
|
| 97 |
+
### OpenAI API errors
|
| 98 |
+
- Verify API key in `.env`
|
| 99 |
+
- Check API quota and billing
|
| 100 |
+
- Ensure internet connectivity
|
| 101 |
+
|
| 102 |
+
## Next Steps
|
| 103 |
+
|
| 104 |
+
- Review [README.md](README.md) for full documentation
|
| 105 |
+
- Check [docs/RAG_Email_Assistant_Specifications_v1.0.md](docs/RAG_Email_Assistant_Specifications_v1.0.md) for architecture details
|
| 106 |
+
- See [CLAUDE.md](CLAUDE.md) for development guidance
|
| 107 |
+
|
| 108 |
+
## Support
|
| 109 |
+
|
| 110 |
+
For issues, please check:
|
| 111 |
+
1. Environment variables are correctly set
|
| 112 |
+
2. OpenSearch is accessible
|
| 113 |
+
3. Documents are properly indexed
|
| 114 |
+
4. API keys are valid
|
| 115 |
+
|
| 116 |
+
Need help? Open an issue on GitHub.
|
README.md
CHANGED
|
@@ -1,16 +1,256 @@
|
|
| 1 |
-
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom: yellow
|
| 5 |
-
colorTo: purple
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 5.49.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: BFH Student Administration Assistant
|
| 3 |
+
emoji: π§
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: purple
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 5.49.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# π§ BFH Student Administration Email Assistant
|
| 14 |
+
|
| 15 |
+
AI-powered RAG (Retrieval-Augmented Generation) email assistant for university administrative staff at BFH (Bern University of Applied Sciences).
|
| 16 |
+
|
| 17 |
+
## Overview
|
| 18 |
+
|
| 19 |
+
This system helps administrative staff compose accurate, professional email responses to student inquiries using:
|
| 20 |
+
|
| 21 |
+
- **Haystack 2**: Document processing and hybrid retrieval (BM25 + semantic search)
|
| 22 |
+
- **OpenSearch**: Vector database with k-NN support
|
| 23 |
+
- **PydanticAI**: Multi-agent orchestration with structured outputs
|
| 24 |
+
- **Gradio**: Interactive web interface
|
| 25 |
+
- **OpenAI GPT-4o**: Language model for intent extraction, composition, and fact-checking
|
| 26 |
+
|
| 27 |
+
## Features
|
| 28 |
+
|
| 29 |
+
### π― Multi-Agent Architecture
|
| 30 |
+
|
| 31 |
+
1. **Intent Extraction Agent**: Analyzes queries to extract structured intent (action type, topic, urgency, language)
|
| 32 |
+
2. **Composer Agent**: Drafts professional email responses using retrieved context
|
| 33 |
+
3. **Fact Checker Agent**: Validates drafts against source documents for accuracy
|
| 34 |
+
|
| 35 |
+
### π Hybrid Retrieval
|
| 36 |
+
|
| 37 |
+
- Combines BM25 (keyword-based) and dense vector search
|
| 38 |
+
- Configurable scoring weights
|
| 39 |
+
- Retrieves relevant administrative documents and forms
|
| 40 |
+
|
| 41 |
+
### βοΈ Email Composition
|
| 42 |
+
|
| 43 |
+
- Multilingual support (German, English, French)
|
| 44 |
+
- Professional tone and formatting
|
| 45 |
+
- Context-aware responses based on university policies
|
| 46 |
+
- Draft refinement based on user feedback
|
| 47 |
+
|
| 48 |
+
### β
Fact Checking
|
| 49 |
+
|
| 50 |
+
- Automated verification against source documents
|
| 51 |
+
- Accuracy scoring
|
| 52 |
+
- Issue identification and suggestions
|
| 53 |
+
- Chain-of-thought reasoning
|
| 54 |
+
|
| 55 |
+
## Project Structure
|
| 56 |
+
|
| 57 |
+
```
|
| 58 |
+
bfh-studadmin-assist/
|
| 59 |
+
βββ src/
|
| 60 |
+
β βββ config.py # Configuration management
|
| 61 |
+
β βββ document_processing/
|
| 62 |
+
β β βββ loader.py # Markdown document loading
|
| 63 |
+
β β βββ chunker.py # Semantic chunking
|
| 64 |
+
β βββ indexing/
|
| 65 |
+
β β βββ opensearch_client.py # OpenSearch client
|
| 66 |
+
β β βββ indexer.py # Document indexing
|
| 67 |
+
β βββ retrieval/
|
| 68 |
+
β β βββ hybrid_retriever.py # Hybrid BM25 + vector search
|
| 69 |
+
β βββ agents/
|
| 70 |
+
β β βββ intent_agent.py # Intent extraction
|
| 71 |
+
β β βββ composer_agent.py # Email composition
|
| 72 |
+
β β βββ fact_checker_agent.py # Fact checking
|
| 73 |
+
β βββ pipeline/
|
| 74 |
+
β β βββ orchestrator.py # Multi-agent orchestration
|
| 75 |
+
β βββ ui/
|
| 76 |
+
β βββ gradio_app.py # Gradio interface
|
| 77 |
+
βββ scripts/
|
| 78 |
+
β βββ ingest_documents.py # Document ingestion script
|
| 79 |
+
βββ assets/
|
| 80 |
+
β βββ markdown/ # Administrative documents (German)
|
| 81 |
+
βββ docs/
|
| 82 |
+
β βββ RAG_Email_Assistant_Specifications_v1.0.md
|
| 83 |
+
βββ app.py # Main entry point
|
| 84 |
+
βββ requirements.txt
|
| 85 |
+
βββ .env.example
|
| 86 |
+
βββ README.md
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
## Setup
|
| 90 |
+
|
| 91 |
+
### Prerequisites
|
| 92 |
+
|
| 93 |
+
- Python 3.10+
|
| 94 |
+
- OpenSearch instance (with k-NN plugin enabled)
|
| 95 |
+
- OpenAI API key
|
| 96 |
+
|
| 97 |
+
### Installation
|
| 98 |
+
|
| 99 |
+
1. Clone the repository:
|
| 100 |
+
```bash
|
| 101 |
+
git clone https://github.com/yourusername/bfh-studadmin-assist.git
|
| 102 |
+
cd bfh-studadmin-assist
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
2. Install dependencies:
|
| 106 |
+
```bash
|
| 107 |
+
pip install -r requirements.txt
|
| 108 |
+
```
|
| 109 |
+
|
| 110 |
+
3. Configure environment variables:
|
| 111 |
+
```bash
|
| 112 |
+
cp .env.example .env
|
| 113 |
+
# Edit .env with your configuration
|
| 114 |
+
```
|
| 115 |
+
|
| 116 |
+
Required environment variables:
|
| 117 |
+
- `OPENAI_API_KEY`: Your OpenAI API key
|
| 118 |
+
- `OPENSEARCH_HOST`: OpenSearch host
|
| 119 |
+
- `OPENSEARCH_PORT`: OpenSearch port
|
| 120 |
+
- `OPENSEARCH_USER`: OpenSearch username
|
| 121 |
+
- `OPENSEARCH_PASSWORD`: OpenSearch password
|
| 122 |
+
- `INDEX_NAME`: Name of the OpenSearch index
|
| 123 |
+
|
| 124 |
+
### Document Ingestion
|
| 125 |
+
|
| 126 |
+
Before running the application, index the administrative documents:
|
| 127 |
+
|
| 128 |
+
```bash
|
| 129 |
+
python scripts/ingest_documents.py
|
| 130 |
+
```
|
| 131 |
+
|
| 132 |
+
This will:
|
| 133 |
+
1. Load markdown documents from `assets/markdown/`
|
| 134 |
+
2. Chunk documents using semantic splitting
|
| 135 |
+
3. Generate embeddings using OpenAI
|
| 136 |
+
4. Index documents in OpenSearch with hybrid retrieval support
|
| 137 |
+
|
| 138 |
+
### Running the Application
|
| 139 |
+
|
| 140 |
+
**Local development:**
|
| 141 |
+
```bash
|
| 142 |
+
python app.py
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
**Production (Hugging Face Spaces):**
|
| 146 |
+
The app is configured for automatic deployment to Hugging Face Spaces via `app.py`.
|
| 147 |
+
|
| 148 |
+
## Usage
|
| 149 |
+
|
| 150 |
+
1. **Enter a student query** in the text area
|
| 151 |
+
2. **Click "Generate Email Draft"** to process the query
|
| 152 |
+
3. Review the generated email and analysis:
|
| 153 |
+
- Intent analysis
|
| 154 |
+
- Email subject and body
|
| 155 |
+
- Fact check results
|
| 156 |
+
- Retrieved source documents
|
| 157 |
+
4. **Refine the draft** by providing feedback and clicking "Refine Draft"
|
| 158 |
+
|
| 159 |
+
## Configuration
|
| 160 |
+
|
| 161 |
+
Key configuration options in `.env`:
|
| 162 |
+
|
| 163 |
+
### LLM Configuration
|
| 164 |
+
- `LLM_MODEL`: OpenAI model (default: gpt-4o)
|
| 165 |
+
- `EMBEDDING_MODEL`: Embedding model (default: text-embedding-3-small)
|
| 166 |
+
- `LLM_TEMPERATURE`: Temperature for generation (0-1)
|
| 167 |
+
- `LLM_MAX_TOKENS`: Maximum tokens per response
|
| 168 |
+
|
| 169 |
+
### Document Processing
|
| 170 |
+
- `DOCUMENTS_PATH`: Path to markdown documents
|
| 171 |
+
- `CHUNK_SIZE`: Target words per chunk
|
| 172 |
+
- `CHUNK_OVERLAP`: Word overlap between chunks
|
| 173 |
+
|
| 174 |
+
### Retrieval
|
| 175 |
+
- `RETRIEVAL_TOP_K`: Number of documents to retrieve
|
| 176 |
+
- `BM25_WEIGHT`: Weight for BM25 score (0-1)
|
| 177 |
+
- `VECTOR_WEIGHT`: Weight for vector similarity (0-1)
|
| 178 |
+
- `MIN_RELEVANCE_SCORE`: Minimum score threshold
|
| 179 |
+
|
| 180 |
+
## Administrative Documents
|
| 181 |
+
|
| 182 |
+
The system uses administrative documents from BFH including:
|
| 183 |
+
|
| 184 |
+
- Exmatriculation forms and procedures
|
| 185 |
+
- Leave of absence (Beurlaubung) information
|
| 186 |
+
- Name change forms
|
| 187 |
+
- Insurance information (AHV, health insurance)
|
| 188 |
+
- Fee schedules
|
| 189 |
+
- Course withdrawal procedures
|
| 190 |
+
|
| 191 |
+
Documents are stored as markdown in `assets/markdown/`.
|
| 192 |
+
|
| 193 |
+
## Development
|
| 194 |
+
|
| 195 |
+
### Adding New Documents
|
| 196 |
+
|
| 197 |
+
1. Add markdown files to `assets/markdown/`
|
| 198 |
+
2. Run the ingestion script:
|
| 199 |
+
```bash
|
| 200 |
+
python scripts/ingest_documents.py
|
| 201 |
+
```
|
| 202 |
+
|
| 203 |
+
### Testing
|
| 204 |
+
|
| 205 |
+
Run the application locally and test with sample queries:
|
| 206 |
+
- "Wie kann ich mich exmatrikulieren?"
|
| 207 |
+
- "What are the fees for changing my name?"
|
| 208 |
+
- "Ich mΓΆchte ein Modul zurΓΌckziehen."
|
| 209 |
+
|
| 210 |
+
### Extending the System
|
| 211 |
+
|
| 212 |
+
- **Add new agents**: Create new agent classes in `src/agents/`
|
| 213 |
+
- **Customize prompts**: Edit system prompts in agent initialization
|
| 214 |
+
- **Add new retrievers**: Implement in `src/retrieval/`
|
| 215 |
+
- **Modify UI**: Edit `src/ui/gradio_app.py`
|
| 216 |
+
|
| 217 |
+
## Technical Details
|
| 218 |
+
|
| 219 |
+
### Haystack Pipeline
|
| 220 |
+
|
| 221 |
+
The system uses Haystack 2 components:
|
| 222 |
+
- `MarkdownToDocument`: Convert markdown files to documents
|
| 223 |
+
- `DocumentSplitter`: Semantic chunking
|
| 224 |
+
- `OpenAIDocumentEmbedder`: Generate embeddings
|
| 225 |
+
- `OpenSearchDocumentStore`: Store and retrieve documents
|
| 226 |
+
- `OpenSearchBM25Retriever`: Keyword-based retrieval
|
| 227 |
+
- `OpenSearchEmbeddingRetriever`: Vector-based retrieval
|
| 228 |
+
|
| 229 |
+
### PydanticAI Agents
|
| 230 |
+
|
| 231 |
+
Agents use structured outputs with Pydantic models:
|
| 232 |
+
- `IntentData`: Structured intent information
|
| 233 |
+
- `EmailDraft`: Email with metadata
|
| 234 |
+
- `FactCheckResult`: Verification results
|
| 235 |
+
|
| 236 |
+
### OpenSearch Index Mapping
|
| 237 |
+
|
| 238 |
+
The index uses:
|
| 239 |
+
- Text fields with BM25 for keyword search
|
| 240 |
+
- k-NN vector fields for semantic search
|
| 241 |
+
- Metadata fields for filtering and display
|
| 242 |
+
|
| 243 |
+
## License
|
| 244 |
+
|
| 245 |
+
MIT License - See LICENSE file for details
|
| 246 |
+
|
| 247 |
+
## Acknowledgments
|
| 248 |
+
|
| 249 |
+
- Built for BFH (Bern University of Applied Sciences)
|
| 250 |
+
- Uses Haystack by deepset
|
| 251 |
+
- Powered by OpenAI GPT-4o
|
| 252 |
+
- UI built with Gradio
|
| 253 |
+
|
| 254 |
+
## Support
|
| 255 |
+
|
| 256 |
+
For issues or questions, please open an issue on GitHub.
|
app.py
CHANGED
|
@@ -1,70 +1,20 @@
|
|
| 1 |
-
|
| 2 |
-
from huggingface_hub import InferenceClient
|
| 3 |
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
max_tokens,
|
| 10 |
-
temperature,
|
| 11 |
-
top_p,
|
| 12 |
-
hf_token: gr.OAuthToken,
|
| 13 |
-
):
|
| 14 |
-
"""
|
| 15 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 16 |
-
"""
|
| 17 |
-
client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b")
|
| 18 |
-
|
| 19 |
-
messages = [{"role": "system", "content": system_message}]
|
| 20 |
-
|
| 21 |
-
messages.extend(history)
|
| 22 |
-
|
| 23 |
-
messages.append({"role": "user", "content": message})
|
| 24 |
-
|
| 25 |
-
response = ""
|
| 26 |
-
|
| 27 |
-
for message in client.chat_completion(
|
| 28 |
-
messages,
|
| 29 |
-
max_tokens=max_tokens,
|
| 30 |
-
stream=True,
|
| 31 |
-
temperature=temperature,
|
| 32 |
-
top_p=top_p,
|
| 33 |
-
):
|
| 34 |
-
choices = message.choices
|
| 35 |
-
token = ""
|
| 36 |
-
if len(choices) and choices[0].delta.content:
|
| 37 |
-
token = choices[0].delta.content
|
| 38 |
-
|
| 39 |
-
response += token
|
| 40 |
-
yield response
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
-
chatbot = gr.ChatInterface(
|
| 47 |
-
respond,
|
| 48 |
-
type="messages",
|
| 49 |
-
additional_inputs=[
|
| 50 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 51 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 52 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 53 |
-
gr.Slider(
|
| 54 |
-
minimum=0.1,
|
| 55 |
-
maximum=1.0,
|
| 56 |
-
value=0.95,
|
| 57 |
-
step=0.05,
|
| 58 |
-
label="Top-p (nucleus sampling)",
|
| 59 |
-
),
|
| 60 |
-
],
|
| 61 |
)
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
|
|
|
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
| 70 |
demo.launch()
|
|
|
|
| 1 |
+
"""Main application entry point for Hugging Face Spaces deployment."""
|
|
|
|
| 2 |
|
| 3 |
+
import logging
|
| 4 |
+
from src.ui.gradio_app import create_gradio_interface
|
| 5 |
|
| 6 |
+
# Configure logging
|
| 7 |
+
logging.basicConfig(
|
| 8 |
+
level=logging.INFO,
|
| 9 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
)
|
| 11 |
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
# Create and launch the Gradio interface
|
| 15 |
+
logger.info("Starting BFH Student Administration Email Assistant...")
|
| 16 |
|
| 17 |
+
demo = create_gradio_interface()
|
| 18 |
|
| 19 |
if __name__ == "__main__":
|
| 20 |
demo.launch()
|
requirements.txt
CHANGED
|
@@ -1,60 +1,37 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
gradio==5.49.0
|
| 15 |
gradio_client==1.13.3
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
httpcore==1.0.9
|
| 20 |
httpx==0.28.1
|
| 21 |
-
|
| 22 |
-
idna==3.10
|
| 23 |
-
Jinja2==3.1.6
|
| 24 |
-
jiter==0.11.0
|
| 25 |
-
markdown-it-py==4.0.0
|
| 26 |
-
MarkupSafe==3.0.3
|
| 27 |
-
mdurl==0.1.2
|
| 28 |
-
numpy==2.3.3
|
| 29 |
-
openai==2.2.0
|
| 30 |
-
orjson==3.11.3
|
| 31 |
-
packaging==25.0
|
| 32 |
-
pandas==2.3.3
|
| 33 |
-
pillow==11.3.0
|
| 34 |
-
pydantic==2.11.10
|
| 35 |
-
pydantic_core==2.33.2
|
| 36 |
-
pydub==0.25.1
|
| 37 |
-
Pygments==2.19.2
|
| 38 |
-
python-dateutil==2.9.0.post0
|
| 39 |
-
python-dotenv==1.1.1
|
| 40 |
-
python-multipart==0.0.20
|
| 41 |
-
pytz==2025.2
|
| 42 |
-
PyYAML==6.0.3
|
| 43 |
requests==2.32.5
|
|
|
|
|
|
|
|
|
|
| 44 |
rich==14.1.0
|
| 45 |
-
ruff==0.13.3
|
| 46 |
-
safehttpx==0.1.6
|
| 47 |
-
semantic-version==2.10.0
|
| 48 |
-
shellingham==1.5.4
|
| 49 |
-
six==1.17.0
|
| 50 |
-
sniffio==1.3.1
|
| 51 |
-
starlette==0.48.0
|
| 52 |
-
tomlkit==0.13.3
|
| 53 |
tqdm==4.67.1
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
urllib3==2.5.0
|
| 59 |
uvicorn==0.37.0
|
| 60 |
websockets==15.0.1
|
|
|
|
|
|
| 1 |
+
# Core dependencies
|
| 2 |
+
python-dotenv==1.1.1
|
| 3 |
+
|
| 4 |
+
# Haystack and integrations
|
| 5 |
+
haystack-ai==2.8.0
|
| 6 |
+
opensearch-haystack==1.1.0
|
| 7 |
+
opensearch-py==2.8.0
|
| 8 |
+
|
| 9 |
+
# PydanticAI for agents
|
| 10 |
+
pydantic-ai==0.0.14
|
| 11 |
+
pydantic==2.11.10
|
| 12 |
+
pydantic_core==2.33.2
|
| 13 |
+
|
| 14 |
+
# OpenAI
|
| 15 |
+
openai==2.2.0
|
| 16 |
+
|
| 17 |
+
# Gradio UI
|
| 18 |
gradio==5.49.0
|
| 19 |
gradio_client==1.13.3
|
| 20 |
+
|
| 21 |
+
# HTTP and async
|
| 22 |
+
aiofiles==24.1.0
|
|
|
|
| 23 |
httpx==0.28.1
|
| 24 |
+
httpcore==1.0.9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
requests==2.32.5
|
| 26 |
+
certifi==2025.10.5
|
| 27 |
+
|
| 28 |
+
# Utilities
|
| 29 |
rich==14.1.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
tqdm==4.67.1
|
| 31 |
+
PyYAML==6.0.3
|
| 32 |
+
|
| 33 |
+
# Supporting packages for Gradio
|
| 34 |
+
fastapi==0.118.0
|
|
|
|
| 35 |
uvicorn==0.37.0
|
| 36 |
websockets==15.0.1
|
| 37 |
+
huggingface-hub==0.35.3
|
scripts/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
"""Scripts for document ingestion and maintenance."""
|
scripts/ingest_documents.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""Script to ingest and index markdown documents."""
|
| 3 |
+
|
| 4 |
+
import sys
|
| 5 |
+
import logging
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
# Add src to path
|
| 9 |
+
sys.path.insert(0, str(Path(__file__).parent.parent))
|
| 10 |
+
|
| 11 |
+
from src.config import get_config
|
| 12 |
+
from src.document_processing.loader import MarkdownDocumentLoader
|
| 13 |
+
from src.document_processing.chunker import SemanticChunker
|
| 14 |
+
from src.indexing.opensearch_client import OpenSearchClient
|
| 15 |
+
from src.indexing.indexer import DocumentIndexer
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def setup_logging():
|
| 19 |
+
"""Configure logging."""
|
| 20 |
+
logging.basicConfig(
|
| 21 |
+
level=logging.INFO,
|
| 22 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
| 23 |
+
)
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def main():
|
| 27 |
+
"""Main ingestion workflow."""
|
| 28 |
+
setup_logging()
|
| 29 |
+
logger = logging.getLogger(__name__)
|
| 30 |
+
|
| 31 |
+
logger.info("Starting document ingestion process...")
|
| 32 |
+
|
| 33 |
+
# Load configuration
|
| 34 |
+
config = get_config()
|
| 35 |
+
logger.info(f"Using documents path: {config.document_processing.documents_path}")
|
| 36 |
+
logger.info(f"Target index: {config.opensearch.index_name}")
|
| 37 |
+
|
| 38 |
+
# Initialize OpenSearch client
|
| 39 |
+
logger.info("Connecting to OpenSearch...")
|
| 40 |
+
os_client = OpenSearchClient(config.opensearch)
|
| 41 |
+
|
| 42 |
+
if not os_client.ping():
|
| 43 |
+
logger.error("Failed to connect to OpenSearch. Please check your configuration.")
|
| 44 |
+
sys.exit(1)
|
| 45 |
+
|
| 46 |
+
logger.info("Successfully connected to OpenSearch")
|
| 47 |
+
|
| 48 |
+
# Create or recreate index
|
| 49 |
+
logger.info("Setting up index...")
|
| 50 |
+
if os_client.index_exists():
|
| 51 |
+
logger.warning(f"Index '{config.opensearch.index_name}' already exists")
|
| 52 |
+
response = input("Do you want to delete and recreate it? (yes/no): ")
|
| 53 |
+
|
| 54 |
+
if response.lower() in ["yes", "y"]:
|
| 55 |
+
logger.info("Deleting existing index...")
|
| 56 |
+
os_client.delete_index()
|
| 57 |
+
os_client.create_index(embedding_dim=1536)
|
| 58 |
+
else:
|
| 59 |
+
logger.info("Using existing index")
|
| 60 |
+
else:
|
| 61 |
+
os_client.create_index(embedding_dim=1536)
|
| 62 |
+
|
| 63 |
+
# Load documents
|
| 64 |
+
logger.info("Loading markdown documents...")
|
| 65 |
+
loader = MarkdownDocumentLoader(config.document_processing.documents_path)
|
| 66 |
+
documents = loader.load_documents()
|
| 67 |
+
|
| 68 |
+
if not documents:
|
| 69 |
+
logger.error("No documents loaded. Exiting.")
|
| 70 |
+
sys.exit(1)
|
| 71 |
+
|
| 72 |
+
logger.info(f"Loaded {len(documents)} documents")
|
| 73 |
+
|
| 74 |
+
# Chunk documents
|
| 75 |
+
logger.info("Chunking documents...")
|
| 76 |
+
chunker = SemanticChunker(
|
| 77 |
+
chunk_size=config.document_processing.chunk_size,
|
| 78 |
+
chunk_overlap=config.document_processing.chunk_overlap,
|
| 79 |
+
min_chunk_size=config.document_processing.min_chunk_size,
|
| 80 |
+
)
|
| 81 |
+
chunked_documents = chunker.chunk_documents(documents)
|
| 82 |
+
|
| 83 |
+
logger.info(f"Created {len(chunked_documents)} chunks")
|
| 84 |
+
|
| 85 |
+
# Index documents
|
| 86 |
+
logger.info("Indexing documents in OpenSearch...")
|
| 87 |
+
indexer = DocumentIndexer(
|
| 88 |
+
opensearch_config=config.opensearch,
|
| 89 |
+
llm_config=config.llm,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
indexed_count = indexer.index_documents(chunked_documents)
|
| 93 |
+
|
| 94 |
+
logger.info(f"Successfully indexed {indexed_count} document chunks")
|
| 95 |
+
|
| 96 |
+
# Verify
|
| 97 |
+
final_count = indexer.get_document_count()
|
| 98 |
+
logger.info(f"Total documents in index: {final_count}")
|
| 99 |
+
|
| 100 |
+
logger.info("β
Document ingestion completed successfully!")
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
if __name__ == "__main__":
|
| 104 |
+
main()
|
src/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""BFH Student Administration RAG Email Assistant."""
|
| 2 |
+
|
| 3 |
+
__version__ = "1.0.0"
|
src/agents/__init__.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""PydanticAI agents for intent extraction, composition, and fact checking."""
|
| 2 |
+
|
| 3 |
+
from .intent_agent import IntentAgent
|
| 4 |
+
from .composer_agent import ComposerAgent
|
| 5 |
+
from .fact_checker_agent import FactCheckerAgent
|
| 6 |
+
|
| 7 |
+
__all__ = ["IntentAgent", "ComposerAgent", "FactCheckerAgent"]
|
src/agents/composer_agent.py
ADDED
|
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Email composer agent using PydanticAI."""
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
from pydantic import BaseModel, Field
|
| 5 |
+
from pydantic_ai import Agent
|
| 6 |
+
from haystack import Document
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
from .intent_agent import IntentData
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class EmailDraft(BaseModel):
|
| 15 |
+
"""Structured email draft."""
|
| 16 |
+
|
| 17 |
+
subject: str = Field(description="Email subject line")
|
| 18 |
+
body: str = Field(description="Email body text")
|
| 19 |
+
tone: str = Field(
|
| 20 |
+
default="professional",
|
| 21 |
+
description="Tone of the email: 'formal', 'professional', 'friendly'",
|
| 22 |
+
)
|
| 23 |
+
sources_used: List[str] = Field(
|
| 24 |
+
default_factory=list,
|
| 25 |
+
description="List of source documents used in composing the email",
|
| 26 |
+
)
|
| 27 |
+
confidence: float = Field(
|
| 28 |
+
default=0.0,
|
| 29 |
+
description="Confidence score (0-1) in the accuracy of the response",
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
class ComposerAgent:
|
| 34 |
+
"""Agent for composing email responses."""
|
| 35 |
+
|
| 36 |
+
def __init__(self, api_key: str, model: str = "openai:gpt-4o"):
|
| 37 |
+
"""
|
| 38 |
+
Initialize the email composer agent.
|
| 39 |
+
|
| 40 |
+
Args:
|
| 41 |
+
api_key: OpenAI API key
|
| 42 |
+
model: Model to use for composition
|
| 43 |
+
"""
|
| 44 |
+
self.agent = Agent(
|
| 45 |
+
model,
|
| 46 |
+
result_type=EmailDraft,
|
| 47 |
+
system_prompt="""You are an expert email composer for BFH (Bern University of Applied Sciences) administrative staff.
|
| 48 |
+
|
| 49 |
+
Your task is to compose professional, accurate, and helpful email responses to student inquiries based on:
|
| 50 |
+
1. The user's query and extracted intent
|
| 51 |
+
2. Retrieved relevant documents from the knowledge base
|
| 52 |
+
3. University policies and procedures
|
| 53 |
+
|
| 54 |
+
Guidelines for email composition:
|
| 55 |
+
- Write in the same language as the query (German, English, or French)
|
| 56 |
+
- Use a professional but friendly tone
|
| 57 |
+
- Be clear, concise, and accurate
|
| 58 |
+
- Reference specific forms, deadlines, or procedures when relevant
|
| 59 |
+
- Include concrete next steps or actions for the student
|
| 60 |
+
- Cite information from the retrieved documents
|
| 61 |
+
- If information is incomplete, acknowledge what you can't answer
|
| 62 |
+
- Use appropriate greeting and closing
|
| 63 |
+
- Structure the email logically with paragraphs
|
| 64 |
+
|
| 65 |
+
For German emails:
|
| 66 |
+
- Use formal "Sie" form
|
| 67 |
+
- Common greetings: "Guten Tag", "Sehr geehrte/r [Name]"
|
| 68 |
+
- Common closings: "Freundliche GrΓΌsse", "Mit freundlichen GrΓΌssen"
|
| 69 |
+
|
| 70 |
+
For English emails:
|
| 71 |
+
- Use professional greeting: "Dear [Name]" or "Hello"
|
| 72 |
+
- Common closings: "Best regards", "Kind regards"
|
| 73 |
+
|
| 74 |
+
Track which source documents you used and estimate your confidence in the response accuracy.""",
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
async def compose_email(
|
| 78 |
+
self, query: str, intent: IntentData, context_docs: List[Document]
|
| 79 |
+
) -> EmailDraft:
|
| 80 |
+
"""
|
| 81 |
+
Compose an email response.
|
| 82 |
+
|
| 83 |
+
Args:
|
| 84 |
+
query: Original user query
|
| 85 |
+
intent: Extracted intent data
|
| 86 |
+
context_docs: Retrieved context documents
|
| 87 |
+
|
| 88 |
+
Returns:
|
| 89 |
+
Email draft
|
| 90 |
+
"""
|
| 91 |
+
logger.info(f"Composing email for topic: {intent.topic}")
|
| 92 |
+
|
| 93 |
+
# Build context from documents
|
| 94 |
+
context_text = self._build_context(context_docs)
|
| 95 |
+
|
| 96 |
+
# Create prompt with all information
|
| 97 |
+
prompt = f"""Compose an email response for the following query.
|
| 98 |
+
|
| 99 |
+
User Query: {query}
|
| 100 |
+
|
| 101 |
+
Intent Analysis:
|
| 102 |
+
- Action Type: {intent.action_type}
|
| 103 |
+
- Topic: {intent.topic}
|
| 104 |
+
- Language: {intent.language}
|
| 105 |
+
- Urgency: {intent.urgency}
|
| 106 |
+
- Key Entities: {', '.join(intent.key_entities) if intent.key_entities else 'None'}
|
| 107 |
+
- Specific Questions: {', '.join(intent.specific_questions) if intent.specific_questions else 'None'}
|
| 108 |
+
|
| 109 |
+
Retrieved Context from Knowledge Base:
|
| 110 |
+
{context_text}
|
| 111 |
+
|
| 112 |
+
Based on this information, compose a complete email response that addresses the user's query professionally and accurately."""
|
| 113 |
+
|
| 114 |
+
try:
|
| 115 |
+
result = await self.agent.run(prompt)
|
| 116 |
+
draft = result.data
|
| 117 |
+
|
| 118 |
+
logger.info(f"Composed email - Subject: {draft.subject}")
|
| 119 |
+
logger.debug(f"Confidence: {draft.confidence}")
|
| 120 |
+
|
| 121 |
+
return draft
|
| 122 |
+
|
| 123 |
+
except Exception as e:
|
| 124 |
+
logger.error(f"Error composing email: {e}")
|
| 125 |
+
# Return minimal draft on error
|
| 126 |
+
return EmailDraft(
|
| 127 |
+
subject="Ihre Anfrage / Your Inquiry",
|
| 128 |
+
body="Vielen Dank fΓΌr Ihre Anfrage. Wir werden uns in KΓΌrze bei Ihnen melden.\n\nThank you for your inquiry. We will get back to you shortly.",
|
| 129 |
+
tone="professional",
|
| 130 |
+
confidence=0.0,
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
def _build_context(self, documents: List[Document]) -> str:
|
| 134 |
+
"""
|
| 135 |
+
Build context text from retrieved documents.
|
| 136 |
+
|
| 137 |
+
Args:
|
| 138 |
+
documents: List of retrieved documents
|
| 139 |
+
|
| 140 |
+
Returns:
|
| 141 |
+
Formatted context text
|
| 142 |
+
"""
|
| 143 |
+
if not documents:
|
| 144 |
+
return "No relevant documents found in the knowledge base."
|
| 145 |
+
|
| 146 |
+
context_parts = []
|
| 147 |
+
for i, doc in enumerate(documents, 1):
|
| 148 |
+
source = doc.meta.get("source_file", "Unknown") if doc.meta else "Unknown"
|
| 149 |
+
score = doc.score or 0.0
|
| 150 |
+
|
| 151 |
+
context_parts.append(
|
| 152 |
+
f"--- Document {i} (Source: {source}, Relevance: {score:.2f}) ---\n{doc.content}\n"
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
return "\n".join(context_parts)
|
src/agents/fact_checker_agent.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Fact checker agent using PydanticAI for validating email responses."""
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
from pydantic import BaseModel, Field
|
| 5 |
+
from pydantic_ai import Agent
|
| 6 |
+
from haystack import Document
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
from .composer_agent import EmailDraft
|
| 10 |
+
|
| 11 |
+
logger = logging.getLogger(__name__)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class FactCheckResult(BaseModel):
|
| 15 |
+
"""Result of fact checking an email draft."""
|
| 16 |
+
|
| 17 |
+
is_accurate: bool = Field(
|
| 18 |
+
description="Whether the email content is factually accurate"
|
| 19 |
+
)
|
| 20 |
+
accuracy_score: float = Field(
|
| 21 |
+
description="Overall accuracy score (0-1)",
|
| 22 |
+
ge=0.0,
|
| 23 |
+
le=1.0,
|
| 24 |
+
)
|
| 25 |
+
issues_found: List[str] = Field(
|
| 26 |
+
default_factory=list,
|
| 27 |
+
description="List of factual issues or inaccuracies found",
|
| 28 |
+
)
|
| 29 |
+
verification_steps: List[str] = Field(
|
| 30 |
+
default_factory=list,
|
| 31 |
+
description="Steps taken to verify the facts",
|
| 32 |
+
)
|
| 33 |
+
suggestions: List[str] = Field(
|
| 34 |
+
default_factory=list,
|
| 35 |
+
description="Suggestions for improving accuracy or completeness",
|
| 36 |
+
)
|
| 37 |
+
verified_claims: List[str] = Field(
|
| 38 |
+
default_factory=list,
|
| 39 |
+
description="Claims that were successfully verified against sources",
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class FactCheckerAgent:
|
| 44 |
+
"""Agent for fact-checking email drafts against source documents."""
|
| 45 |
+
|
| 46 |
+
def __init__(self, api_key: str, model: str = "openai:gpt-4o"):
|
| 47 |
+
"""
|
| 48 |
+
Initialize the fact checker agent.
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
api_key: OpenAI API key
|
| 52 |
+
model: Model to use for fact checking
|
| 53 |
+
"""
|
| 54 |
+
self.agent = Agent(
|
| 55 |
+
model,
|
| 56 |
+
result_type=FactCheckResult,
|
| 57 |
+
system_prompt="""You are an expert fact-checker for university administrative communications.
|
| 58 |
+
|
| 59 |
+
Your task is to verify the accuracy of email drafts against source documents from the knowledge base.
|
| 60 |
+
|
| 61 |
+
Verification process:
|
| 62 |
+
1. Extract all factual claims from the email (dates, procedures, requirements, fees, deadlines, etc.)
|
| 63 |
+
2. Cross-reference each claim with the provided source documents
|
| 64 |
+
3. Identify any unsupported, incorrect, or contradictory information
|
| 65 |
+
4. Check for completeness - are important details missing?
|
| 66 |
+
5. Verify that references to forms, processes, or policies are accurate
|
| 67 |
+
6. Ensure numerical information (fees, dates, etc.) is correct
|
| 68 |
+
|
| 69 |
+
Classification of issues:
|
| 70 |
+
- CRITICAL: Factually incorrect information that could mislead students
|
| 71 |
+
- WARNING: Information not found in sources (may be correct but unverified)
|
| 72 |
+
- SUGGESTION: Missing information that would improve completeness
|
| 73 |
+
|
| 74 |
+
Be thorough and precise. University administrative information must be accurate as it affects students' academic status and finances.
|
| 75 |
+
|
| 76 |
+
Provide:
|
| 77 |
+
- Overall accuracy assessment
|
| 78 |
+
- Specific issues found with severity level
|
| 79 |
+
- Verification steps you performed
|
| 80 |
+
- Suggestions for improvement
|
| 81 |
+
- List of verified claims""",
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
async def fact_check(
|
| 85 |
+
self, email_draft: EmailDraft, source_docs: List[Document]
|
| 86 |
+
) -> FactCheckResult:
|
| 87 |
+
"""
|
| 88 |
+
Fact-check an email draft against source documents.
|
| 89 |
+
|
| 90 |
+
Args:
|
| 91 |
+
email_draft: Email draft to check
|
| 92 |
+
source_docs: Source documents used for context
|
| 93 |
+
|
| 94 |
+
Returns:
|
| 95 |
+
Fact check result with accuracy assessment
|
| 96 |
+
"""
|
| 97 |
+
logger.info("Fact-checking email draft...")
|
| 98 |
+
|
| 99 |
+
# Build source context
|
| 100 |
+
source_text = self._build_source_context(source_docs)
|
| 101 |
+
|
| 102 |
+
# Create fact-checking prompt
|
| 103 |
+
prompt = f"""Fact-check the following email draft against the provided source documents.
|
| 104 |
+
|
| 105 |
+
EMAIL DRAFT:
|
| 106 |
+
Subject: {email_draft.subject}
|
| 107 |
+
|
| 108 |
+
Body:
|
| 109 |
+
{email_draft.body}
|
| 110 |
+
|
| 111 |
+
SOURCE DOCUMENTS:
|
| 112 |
+
{source_text}
|
| 113 |
+
|
| 114 |
+
Perform a thorough fact-check and identify any inaccuracies, unsupported claims, or missing important information."""
|
| 115 |
+
|
| 116 |
+
try:
|
| 117 |
+
result = await self.agent.run(prompt)
|
| 118 |
+
fact_check_result = result.data
|
| 119 |
+
|
| 120 |
+
logger.info(f"Fact check complete - Accurate: {fact_check_result.is_accurate}")
|
| 121 |
+
logger.info(f"Accuracy score: {fact_check_result.accuracy_score:.2f}")
|
| 122 |
+
|
| 123 |
+
if fact_check_result.issues_found:
|
| 124 |
+
logger.warning(f"Issues found: {len(fact_check_result.issues_found)}")
|
| 125 |
+
for issue in fact_check_result.issues_found:
|
| 126 |
+
logger.warning(f" - {issue}")
|
| 127 |
+
|
| 128 |
+
return fact_check_result
|
| 129 |
+
|
| 130 |
+
except Exception as e:
|
| 131 |
+
logger.error(f"Error during fact checking: {e}")
|
| 132 |
+
# Return conservative result on error
|
| 133 |
+
return FactCheckResult(
|
| 134 |
+
is_accurate=False,
|
| 135 |
+
accuracy_score=0.5,
|
| 136 |
+
issues_found=["Unable to complete fact check due to error"],
|
| 137 |
+
verification_steps=["Attempted automated fact checking"],
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
def _build_source_context(self, documents: List[Document]) -> str:
|
| 141 |
+
"""
|
| 142 |
+
Build formatted source context from documents.
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
documents: List of source documents
|
| 146 |
+
|
| 147 |
+
Returns:
|
| 148 |
+
Formatted source text
|
| 149 |
+
"""
|
| 150 |
+
if not documents:
|
| 151 |
+
return "No source documents provided."
|
| 152 |
+
|
| 153 |
+
context_parts = []
|
| 154 |
+
for i, doc in enumerate(documents, 1):
|
| 155 |
+
source = doc.meta.get("source_file", "Unknown") if doc.meta else "Unknown"
|
| 156 |
+
|
| 157 |
+
context_parts.append(f"--- Source {i}: {source} ---\n{doc.content}\n")
|
| 158 |
+
|
| 159 |
+
return "\n".join(context_parts)
|
src/agents/intent_agent.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Intent extraction agent using PydanticAI."""
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
from pydantic import BaseModel, Field
|
| 5 |
+
from pydantic_ai import Agent
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class IntentData(BaseModel):
|
| 12 |
+
"""Structured intent data extracted from user query."""
|
| 13 |
+
|
| 14 |
+
action_type: str = Field(
|
| 15 |
+
description="Type of action: 'information_request', 'form_help', 'process_guidance', 'general_inquiry'"
|
| 16 |
+
)
|
| 17 |
+
topic: str = Field(
|
| 18 |
+
description="Main topic or subject of the query (e.g., 'exmatriculation', 'insurance', 'fees')"
|
| 19 |
+
)
|
| 20 |
+
key_entities: List[str] = Field(
|
| 21 |
+
default_factory=list,
|
| 22 |
+
description="Key entities mentioned (dates, forms, departments, etc.)",
|
| 23 |
+
)
|
| 24 |
+
language: str = Field(
|
| 25 |
+
default="de", description="Detected language of the query (de, en, fr)"
|
| 26 |
+
)
|
| 27 |
+
urgency: str = Field(
|
| 28 |
+
default="normal", description="Urgency level: 'high', 'normal', 'low'"
|
| 29 |
+
)
|
| 30 |
+
specific_questions: List[str] = Field(
|
| 31 |
+
default_factory=list,
|
| 32 |
+
description="Specific questions or sub-questions identified in the query",
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class IntentAgent:
|
| 37 |
+
"""Agent for extracting structured intent from user queries."""
|
| 38 |
+
|
| 39 |
+
def __init__(self, api_key: str, model: str = "openai:gpt-4o"):
|
| 40 |
+
"""
|
| 41 |
+
Initialize the intent extraction agent.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
api_key: OpenAI API key
|
| 45 |
+
model: Model to use for intent extraction
|
| 46 |
+
"""
|
| 47 |
+
self.agent = Agent(
|
| 48 |
+
model,
|
| 49 |
+
result_type=IntentData,
|
| 50 |
+
system_prompt="""You are an expert at analyzing user queries for a university administrative email assistant.
|
| 51 |
+
|
| 52 |
+
Your task is to extract structured intent information from user queries. Analyze:
|
| 53 |
+
1. What type of action is being requested (information, form help, process guidance, etc.)
|
| 54 |
+
2. The main topic or subject matter
|
| 55 |
+
3. Key entities mentioned (specific forms, dates, departments, processes)
|
| 56 |
+
4. The language of the query
|
| 57 |
+
5. Urgency level based on context and keywords
|
| 58 |
+
6. Specific questions that need to be answered
|
| 59 |
+
|
| 60 |
+
Context: This is for BFH (Bern University of Applied Sciences) administrative staff helping students with:
|
| 61 |
+
- Exmatriculation (leaving university)
|
| 62 |
+
- Leave of absence (Beurlaubung)
|
| 63 |
+
- Name changes
|
| 64 |
+
- Insurance matters (AHV, health insurance)
|
| 65 |
+
- Fees and payments
|
| 66 |
+
- Course withdrawals and deadlines
|
| 67 |
+
|
| 68 |
+
Provide accurate, structured intent extraction to help compose appropriate email responses.""",
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
async def extract_intent(self, query: str) -> IntentData:
|
| 72 |
+
"""
|
| 73 |
+
Extract intent from user query.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
query: User's query text
|
| 77 |
+
|
| 78 |
+
Returns:
|
| 79 |
+
Structured intent data
|
| 80 |
+
"""
|
| 81 |
+
logger.info("Extracting intent from query...")
|
| 82 |
+
|
| 83 |
+
try:
|
| 84 |
+
result = await self.agent.run(query)
|
| 85 |
+
intent = result.data
|
| 86 |
+
|
| 87 |
+
logger.info(f"Extracted intent - Action: {intent.action_type}, Topic: {intent.topic}")
|
| 88 |
+
logger.debug(f"Full intent: {intent}")
|
| 89 |
+
|
| 90 |
+
return intent
|
| 91 |
+
|
| 92 |
+
except Exception as e:
|
| 93 |
+
logger.error(f"Error extracting intent: {e}")
|
| 94 |
+
# Return default intent on error
|
| 95 |
+
return IntentData(
|
| 96 |
+
action_type="general_inquiry",
|
| 97 |
+
topic="unknown",
|
| 98 |
+
language="de",
|
| 99 |
+
urgency="normal",
|
| 100 |
+
)
|
src/config.py
ADDED
|
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Configuration management for the RAG Email Assistant."""
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
from dataclasses import dataclass
|
| 5 |
+
from typing import Optional
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
|
| 8 |
+
# Load environment variables from .env file
|
| 9 |
+
load_dotenv()
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
@dataclass
|
| 13 |
+
class OpenSearchConfig:
|
| 14 |
+
"""OpenSearch connection configuration."""
|
| 15 |
+
|
| 16 |
+
host: str
|
| 17 |
+
port: int
|
| 18 |
+
user: str
|
| 19 |
+
password: str
|
| 20 |
+
index_name: str
|
| 21 |
+
use_ssl: bool = True
|
| 22 |
+
verify_certs: bool = False
|
| 23 |
+
|
| 24 |
+
@classmethod
|
| 25 |
+
def from_env(cls) -> "OpenSearchConfig":
|
| 26 |
+
"""Create configuration from environment variables."""
|
| 27 |
+
return cls(
|
| 28 |
+
host=os.getenv("OPENSEARCH_HOST", "localhost"),
|
| 29 |
+
port=int(os.getenv("OPENSEARCH_PORT", "9200")),
|
| 30 |
+
user=os.getenv("OPENSEARCH_USER", "admin"),
|
| 31 |
+
password=os.getenv("OPENSEARCH_PASSWORD", ""),
|
| 32 |
+
index_name=os.getenv("INDEX_NAME", "bfh_admin_docs"),
|
| 33 |
+
use_ssl=os.getenv("OPENSEARCH_USE_SSL", "true").lower() == "true",
|
| 34 |
+
verify_certs=os.getenv("OPENSEARCH_VERIFY_CERTS", "false").lower() == "true",
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
@dataclass
|
| 39 |
+
class LLMConfig:
|
| 40 |
+
"""LLM configuration."""
|
| 41 |
+
|
| 42 |
+
api_key: str
|
| 43 |
+
model_name: str = "gpt-4o"
|
| 44 |
+
embedding_model: str = "text-embedding-3-small"
|
| 45 |
+
temperature: float = 0.7
|
| 46 |
+
max_tokens: int = 2000
|
| 47 |
+
|
| 48 |
+
@classmethod
|
| 49 |
+
def from_env(cls) -> "LLMConfig":
|
| 50 |
+
"""Create configuration from environment variables."""
|
| 51 |
+
api_key = os.getenv("OPENAI_API_KEY", "")
|
| 52 |
+
if not api_key:
|
| 53 |
+
raise ValueError("OPENAI_API_KEY environment variable is required")
|
| 54 |
+
|
| 55 |
+
return cls(
|
| 56 |
+
api_key=api_key,
|
| 57 |
+
model_name=os.getenv("LLM_MODEL", "gpt-4o"),
|
| 58 |
+
embedding_model=os.getenv("EMBEDDING_MODEL", "text-embedding-3-small"),
|
| 59 |
+
temperature=float(os.getenv("LLM_TEMPERATURE", "0.7")),
|
| 60 |
+
max_tokens=int(os.getenv("LLM_MAX_TOKENS", "2000")),
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
@dataclass
|
| 65 |
+
class DocumentProcessingConfig:
|
| 66 |
+
"""Document processing configuration."""
|
| 67 |
+
|
| 68 |
+
documents_path: str = "assets/markdown"
|
| 69 |
+
chunk_size: int = 300 # Target words per chunk
|
| 70 |
+
chunk_overlap: int = 50 # Words overlap between chunks
|
| 71 |
+
min_chunk_size: int = 100 # Minimum words per chunk
|
| 72 |
+
|
| 73 |
+
@classmethod
|
| 74 |
+
def from_env(cls) -> "DocumentProcessingConfig":
|
| 75 |
+
"""Create configuration from environment variables."""
|
| 76 |
+
return cls(
|
| 77 |
+
documents_path=os.getenv("DOCUMENTS_PATH", "assets/markdown"),
|
| 78 |
+
chunk_size=int(os.getenv("CHUNK_SIZE", "300")),
|
| 79 |
+
chunk_overlap=int(os.getenv("CHUNK_OVERLAP", "50")),
|
| 80 |
+
min_chunk_size=int(os.getenv("MIN_CHUNK_SIZE", "100")),
|
| 81 |
+
)
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
@dataclass
|
| 85 |
+
class RetrievalConfig:
|
| 86 |
+
"""Retrieval configuration."""
|
| 87 |
+
|
| 88 |
+
top_k: int = 5 # Number of documents to retrieve
|
| 89 |
+
bm25_weight: float = 0.5 # Weight for BM25 score
|
| 90 |
+
vector_weight: float = 0.5 # Weight for vector similarity score
|
| 91 |
+
min_score: float = 0.3 # Minimum relevance score threshold
|
| 92 |
+
|
| 93 |
+
@classmethod
|
| 94 |
+
def from_env(cls) -> "RetrievalConfig":
|
| 95 |
+
"""Create configuration from environment variables."""
|
| 96 |
+
return cls(
|
| 97 |
+
top_k=int(os.getenv("RETRIEVAL_TOP_K", "5")),
|
| 98 |
+
bm25_weight=float(os.getenv("BM25_WEIGHT", "0.5")),
|
| 99 |
+
vector_weight=float(os.getenv("VECTOR_WEIGHT", "0.5")),
|
| 100 |
+
min_score=float(os.getenv("MIN_RELEVANCE_SCORE", "0.3")),
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
@dataclass
|
| 105 |
+
class AppConfig:
|
| 106 |
+
"""Main application configuration."""
|
| 107 |
+
|
| 108 |
+
opensearch: OpenSearchConfig
|
| 109 |
+
llm: LLMConfig
|
| 110 |
+
document_processing: DocumentProcessingConfig
|
| 111 |
+
retrieval: RetrievalConfig
|
| 112 |
+
debug: bool = False
|
| 113 |
+
|
| 114 |
+
@classmethod
|
| 115 |
+
def from_env(cls) -> "AppConfig":
|
| 116 |
+
"""Create complete configuration from environment variables."""
|
| 117 |
+
return cls(
|
| 118 |
+
opensearch=OpenSearchConfig.from_env(),
|
| 119 |
+
llm=LLMConfig.from_env(),
|
| 120 |
+
document_processing=DocumentProcessingConfig.from_env(),
|
| 121 |
+
retrieval=RetrievalConfig.from_env(),
|
| 122 |
+
debug=os.getenv("DEBUG", "false").lower() == "true",
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
# Global configuration instance
|
| 127 |
+
_config: Optional[AppConfig] = None
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def get_config() -> AppConfig:
|
| 131 |
+
"""Get or create the global configuration instance."""
|
| 132 |
+
global _config
|
| 133 |
+
if _config is None:
|
| 134 |
+
_config = AppConfig.from_env()
|
| 135 |
+
return _config
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def reset_config():
|
| 139 |
+
"""Reset the global configuration instance (useful for testing)."""
|
| 140 |
+
global _config
|
| 141 |
+
_config = None
|
src/document_processing/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Document processing components for loading and chunking documents."""
|
| 2 |
+
|
| 3 |
+
from .loader import MarkdownDocumentLoader
|
| 4 |
+
from .chunker import SemanticChunker
|
| 5 |
+
|
| 6 |
+
__all__ = ["MarkdownDocumentLoader", "SemanticChunker"]
|
src/document_processing/chunker.py
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Document chunking with semantic and sentence-based splitting."""
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
from haystack import Document
|
| 5 |
+
from haystack.components.preprocessors import DocumentSplitter
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class SemanticChunker:
|
| 12 |
+
"""Chunks documents using semantic and sentence-based splitting."""
|
| 13 |
+
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
chunk_size: int = 300,
|
| 17 |
+
chunk_overlap: int = 50,
|
| 18 |
+
min_chunk_size: int = 100,
|
| 19 |
+
):
|
| 20 |
+
"""
|
| 21 |
+
Initialize the chunker.
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
chunk_size: Target number of words per chunk
|
| 25 |
+
chunk_overlap: Number of words to overlap between chunks
|
| 26 |
+
min_chunk_size: Minimum number of words per chunk
|
| 27 |
+
"""
|
| 28 |
+
self.chunk_size = chunk_size
|
| 29 |
+
self.chunk_overlap = chunk_overlap
|
| 30 |
+
self.min_chunk_size = min_chunk_size
|
| 31 |
+
|
| 32 |
+
# Use Haystack's DocumentSplitter with sentence-based splitting
|
| 33 |
+
self.splitter = DocumentSplitter(
|
| 34 |
+
split_by="sentence",
|
| 35 |
+
split_length=chunk_size,
|
| 36 |
+
split_overlap=chunk_overlap,
|
| 37 |
+
split_threshold=min_chunk_size,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
def chunk_documents(self, documents: List[Document]) -> List[Document]:
|
| 41 |
+
"""
|
| 42 |
+
Chunk documents into smaller pieces.
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
documents: List of documents to chunk
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
List of chunked documents with metadata
|
| 49 |
+
"""
|
| 50 |
+
if not documents:
|
| 51 |
+
logger.warning("No documents to chunk")
|
| 52 |
+
return []
|
| 53 |
+
|
| 54 |
+
logger.info(f"Chunking {len(documents)} documents")
|
| 55 |
+
|
| 56 |
+
# Split documents
|
| 57 |
+
result = self.splitter.run(documents=documents)
|
| 58 |
+
chunked_docs = result.get("documents", [])
|
| 59 |
+
|
| 60 |
+
# Add chunk metadata
|
| 61 |
+
for idx, doc in enumerate(chunked_docs):
|
| 62 |
+
if doc.meta is None:
|
| 63 |
+
doc.meta = {}
|
| 64 |
+
doc.meta["chunk_id"] = idx
|
| 65 |
+
doc.meta["chunk_size"] = len(doc.content.split())
|
| 66 |
+
|
| 67 |
+
logger.info(f"Created {len(chunked_docs)} chunks from {len(documents)} documents")
|
| 68 |
+
|
| 69 |
+
# Log statistics
|
| 70 |
+
chunk_sizes = [doc.meta.get("chunk_size", 0) for doc in chunked_docs]
|
| 71 |
+
if chunk_sizes:
|
| 72 |
+
avg_size = sum(chunk_sizes) / len(chunk_sizes)
|
| 73 |
+
logger.info(
|
| 74 |
+
f"Chunk statistics - Avg: {avg_size:.1f} words, "
|
| 75 |
+
f"Min: {min(chunk_sizes)}, Max: {max(chunk_sizes)}"
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
return chunked_docs
|
src/document_processing/loader.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Document loader for markdown files."""
|
| 2 |
+
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import List
|
| 5 |
+
from haystack import Document
|
| 6 |
+
from haystack.components.converters import MarkdownToDocument
|
| 7 |
+
import logging
|
| 8 |
+
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class MarkdownDocumentLoader:
|
| 13 |
+
"""Loads markdown documents from a directory."""
|
| 14 |
+
|
| 15 |
+
def __init__(self, documents_path: str):
|
| 16 |
+
"""
|
| 17 |
+
Initialize the document loader.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
documents_path: Path to directory containing markdown files
|
| 21 |
+
"""
|
| 22 |
+
self.documents_path = Path(documents_path)
|
| 23 |
+
self.converter = MarkdownToDocument()
|
| 24 |
+
|
| 25 |
+
def load_documents(self) -> List[Document]:
|
| 26 |
+
"""
|
| 27 |
+
Load all markdown documents from the configured directory.
|
| 28 |
+
|
| 29 |
+
Returns:
|
| 30 |
+
List of Haystack Document objects
|
| 31 |
+
"""
|
| 32 |
+
if not self.documents_path.exists():
|
| 33 |
+
raise FileNotFoundError(f"Documents path does not exist: {self.documents_path}")
|
| 34 |
+
|
| 35 |
+
documents = []
|
| 36 |
+
markdown_files = list(self.documents_path.glob("*.md"))
|
| 37 |
+
|
| 38 |
+
if not markdown_files:
|
| 39 |
+
logger.warning(f"No markdown files found in {self.documents_path}")
|
| 40 |
+
return documents
|
| 41 |
+
|
| 42 |
+
logger.info(f"Loading {len(markdown_files)} markdown files from {self.documents_path}")
|
| 43 |
+
|
| 44 |
+
for md_file in markdown_files:
|
| 45 |
+
try:
|
| 46 |
+
# Convert markdown file to Haystack Document
|
| 47 |
+
result = self.converter.run(sources=[md_file])
|
| 48 |
+
file_documents = result.get("documents", [])
|
| 49 |
+
|
| 50 |
+
# Add metadata
|
| 51 |
+
for doc in file_documents:
|
| 52 |
+
if doc.meta is None:
|
| 53 |
+
doc.meta = {}
|
| 54 |
+
doc.meta["source_file"] = md_file.name
|
| 55 |
+
doc.meta["file_path"] = str(md_file)
|
| 56 |
+
|
| 57 |
+
documents.extend(file_documents)
|
| 58 |
+
logger.info(f"Loaded document: {md_file.name}")
|
| 59 |
+
|
| 60 |
+
except Exception as e:
|
| 61 |
+
logger.error(f"Error loading {md_file.name}: {e}")
|
| 62 |
+
continue
|
| 63 |
+
|
| 64 |
+
logger.info(f"Successfully loaded {len(documents)} documents")
|
| 65 |
+
return documents
|
src/indexing/__init__.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Indexing components for OpenSearch integration."""
|
| 2 |
+
|
| 3 |
+
from .opensearch_client import OpenSearchClient
|
| 4 |
+
from .indexer import DocumentIndexer
|
| 5 |
+
|
| 6 |
+
__all__ = ["OpenSearchClient", "DocumentIndexer"]
|
src/indexing/indexer.py
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Document indexer for storing documents in OpenSearch."""
|
| 2 |
+
|
| 3 |
+
from typing import List
|
| 4 |
+
from haystack import Document
|
| 5 |
+
from haystack.components.embedders import OpenAIDocumentEmbedder
|
| 6 |
+
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
| 7 |
+
from haystack_integrations.document_stores.opensearch import OpenSearchDocumentStore
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
from ..config import OpenSearchConfig, LLMConfig
|
| 11 |
+
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class DocumentIndexer:
|
| 16 |
+
"""Indexes documents in OpenSearch with embeddings."""
|
| 17 |
+
|
| 18 |
+
def __init__(self, opensearch_config: OpenSearchConfig, llm_config: LLMConfig):
|
| 19 |
+
"""
|
| 20 |
+
Initialize the document indexer.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
opensearch_config: OpenSearch configuration
|
| 24 |
+
llm_config: LLM configuration for embeddings
|
| 25 |
+
"""
|
| 26 |
+
self.opensearch_config = opensearch_config
|
| 27 |
+
self.llm_config = llm_config
|
| 28 |
+
|
| 29 |
+
# Initialize document store
|
| 30 |
+
self.document_store = OpenSearchDocumentStore(
|
| 31 |
+
hosts=f"{opensearch_config.host}:{opensearch_config.port}",
|
| 32 |
+
index=opensearch_config.index_name,
|
| 33 |
+
http_auth=(opensearch_config.user, opensearch_config.password),
|
| 34 |
+
use_ssl=opensearch_config.use_ssl,
|
| 35 |
+
verify_certs=opensearch_config.verify_certs,
|
| 36 |
+
embedding_dim=1536, # text-embedding-3-small dimension
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Initialize embedder
|
| 40 |
+
self.embedder = OpenAIDocumentEmbedder(
|
| 41 |
+
api_key=llm_config.api_key,
|
| 42 |
+
model=llm_config.embedding_model,
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
def index_documents(self, documents: List[Document]) -> int:
|
| 46 |
+
"""
|
| 47 |
+
Index documents with embeddings.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
documents: List of documents to index
|
| 51 |
+
|
| 52 |
+
Returns:
|
| 53 |
+
Number of documents successfully indexed
|
| 54 |
+
"""
|
| 55 |
+
if not documents:
|
| 56 |
+
logger.warning("No documents to index")
|
| 57 |
+
return 0
|
| 58 |
+
|
| 59 |
+
logger.info(f"Indexing {len(documents)} documents")
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
# Generate embeddings for documents
|
| 63 |
+
logger.info("Generating embeddings...")
|
| 64 |
+
result = self.embedder.run(documents=documents)
|
| 65 |
+
embedded_docs = result.get("documents", [])
|
| 66 |
+
|
| 67 |
+
if not embedded_docs:
|
| 68 |
+
logger.error("Failed to generate embeddings")
|
| 69 |
+
return 0
|
| 70 |
+
|
| 71 |
+
logger.info(f"Generated embeddings for {len(embedded_docs)} documents")
|
| 72 |
+
|
| 73 |
+
# Write documents to OpenSearch
|
| 74 |
+
logger.info("Writing documents to OpenSearch...")
|
| 75 |
+
self.document_store.write_documents(embedded_docs)
|
| 76 |
+
|
| 77 |
+
doc_count = self.document_store.count_documents()
|
| 78 |
+
logger.info(f"Successfully indexed documents. Total documents in store: {doc_count}")
|
| 79 |
+
|
| 80 |
+
return len(embedded_docs)
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
logger.error(f"Error indexing documents: {e}")
|
| 84 |
+
raise
|
| 85 |
+
|
| 86 |
+
def clear_index(self):
|
| 87 |
+
"""Clear all documents from the index."""
|
| 88 |
+
try:
|
| 89 |
+
self.document_store.delete_documents()
|
| 90 |
+
logger.info("Cleared all documents from index")
|
| 91 |
+
except Exception as e:
|
| 92 |
+
logger.error(f"Error clearing index: {e}")
|
| 93 |
+
raise
|
| 94 |
+
|
| 95 |
+
def get_document_count(self) -> int:
|
| 96 |
+
"""
|
| 97 |
+
Get number of documents in the index.
|
| 98 |
+
|
| 99 |
+
Returns:
|
| 100 |
+
Document count
|
| 101 |
+
"""
|
| 102 |
+
try:
|
| 103 |
+
return self.document_store.count_documents()
|
| 104 |
+
except Exception as e:
|
| 105 |
+
logger.error(f"Error getting document count: {e}")
|
| 106 |
+
return 0
|
src/indexing/opensearch_client.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""OpenSearch client for document storage and retrieval."""
|
| 2 |
+
|
| 3 |
+
from typing import Optional
|
| 4 |
+
from opensearchpy import OpenSearch
|
| 5 |
+
from opensearchpy.exceptions import RequestError
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
from ..config import OpenSearchConfig
|
| 9 |
+
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class OpenSearchClient:
|
| 14 |
+
"""Client for interacting with OpenSearch."""
|
| 15 |
+
|
| 16 |
+
def __init__(self, config: OpenSearchConfig):
|
| 17 |
+
"""
|
| 18 |
+
Initialize OpenSearch client.
|
| 19 |
+
|
| 20 |
+
Args:
|
| 21 |
+
config: OpenSearch configuration
|
| 22 |
+
"""
|
| 23 |
+
self.config = config
|
| 24 |
+
self.client = self._create_client()
|
| 25 |
+
|
| 26 |
+
def _create_client(self) -> OpenSearch:
|
| 27 |
+
"""Create OpenSearch client connection."""
|
| 28 |
+
return OpenSearch(
|
| 29 |
+
hosts=[{"host": self.config.host, "port": self.config.port}],
|
| 30 |
+
http_auth=(self.config.user, self.config.password),
|
| 31 |
+
use_ssl=self.config.use_ssl,
|
| 32 |
+
verify_certs=self.config.verify_certs,
|
| 33 |
+
ssl_show_warn=False,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
def ping(self) -> bool:
|
| 37 |
+
"""
|
| 38 |
+
Check if OpenSearch is accessible.
|
| 39 |
+
|
| 40 |
+
Returns:
|
| 41 |
+
True if connection is successful
|
| 42 |
+
"""
|
| 43 |
+
try:
|
| 44 |
+
return self.client.ping()
|
| 45 |
+
except Exception as e:
|
| 46 |
+
logger.error(f"Failed to ping OpenSearch: {e}")
|
| 47 |
+
return False
|
| 48 |
+
|
| 49 |
+
def create_index(self, index_name: Optional[str] = None, embedding_dim: int = 1536) -> bool:
|
| 50 |
+
"""
|
| 51 |
+
Create an index with proper mapping for hybrid retrieval.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
index_name: Name of index to create (uses config default if not provided)
|
| 55 |
+
embedding_dim: Dimension of embedding vectors
|
| 56 |
+
|
| 57 |
+
Returns:
|
| 58 |
+
True if index was created or already exists
|
| 59 |
+
"""
|
| 60 |
+
index_name = index_name or self.config.index_name
|
| 61 |
+
|
| 62 |
+
# Define index mapping for hybrid retrieval
|
| 63 |
+
mapping = {
|
| 64 |
+
"settings": {
|
| 65 |
+
"index": {
|
| 66 |
+
"number_of_shards": 2,
|
| 67 |
+
"number_of_replicas": 1,
|
| 68 |
+
"knn": True, # Enable k-NN
|
| 69 |
+
}
|
| 70 |
+
},
|
| 71 |
+
"mappings": {
|
| 72 |
+
"properties": {
|
| 73 |
+
"content": {
|
| 74 |
+
"type": "text",
|
| 75 |
+
"analyzer": "standard",
|
| 76 |
+
},
|
| 77 |
+
"embedding": {
|
| 78 |
+
"type": "knn_vector",
|
| 79 |
+
"dimension": embedding_dim,
|
| 80 |
+
"method": {
|
| 81 |
+
"name": "hnsw",
|
| 82 |
+
"space_type": "cosinesimil",
|
| 83 |
+
"engine": "nmslib",
|
| 84 |
+
},
|
| 85 |
+
},
|
| 86 |
+
"meta": {
|
| 87 |
+
"type": "object",
|
| 88 |
+
"properties": {
|
| 89 |
+
"source_file": {"type": "keyword"},
|
| 90 |
+
"file_path": {"type": "keyword"},
|
| 91 |
+
"chunk_id": {"type": "integer"},
|
| 92 |
+
"chunk_size": {"type": "integer"},
|
| 93 |
+
},
|
| 94 |
+
},
|
| 95 |
+
}
|
| 96 |
+
},
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
try:
|
| 100 |
+
if self.client.indices.exists(index=index_name):
|
| 101 |
+
logger.info(f"Index '{index_name}' already exists")
|
| 102 |
+
return True
|
| 103 |
+
|
| 104 |
+
self.client.indices.create(index=index_name, body=mapping)
|
| 105 |
+
logger.info(f"Created index '{index_name}'")
|
| 106 |
+
return True
|
| 107 |
+
|
| 108 |
+
except RequestError as e:
|
| 109 |
+
logger.error(f"Failed to create index: {e}")
|
| 110 |
+
return False
|
| 111 |
+
|
| 112 |
+
def delete_index(self, index_name: Optional[str] = None) -> bool:
|
| 113 |
+
"""
|
| 114 |
+
Delete an index.
|
| 115 |
+
|
| 116 |
+
Args:
|
| 117 |
+
index_name: Name of index to delete (uses config default if not provided)
|
| 118 |
+
|
| 119 |
+
Returns:
|
| 120 |
+
True if index was deleted
|
| 121 |
+
"""
|
| 122 |
+
index_name = index_name or self.config.index_name
|
| 123 |
+
|
| 124 |
+
try:
|
| 125 |
+
if not self.client.indices.exists(index=index_name):
|
| 126 |
+
logger.warning(f"Index '{index_name}' does not exist")
|
| 127 |
+
return False
|
| 128 |
+
|
| 129 |
+
self.client.indices.delete(index=index_name)
|
| 130 |
+
logger.info(f"Deleted index '{index_name}'")
|
| 131 |
+
return True
|
| 132 |
+
|
| 133 |
+
except Exception as e:
|
| 134 |
+
logger.error(f"Failed to delete index: {e}")
|
| 135 |
+
return False
|
| 136 |
+
|
| 137 |
+
def index_exists(self, index_name: Optional[str] = None) -> bool:
|
| 138 |
+
"""
|
| 139 |
+
Check if an index exists.
|
| 140 |
+
|
| 141 |
+
Args:
|
| 142 |
+
index_name: Name of index to check (uses config default if not provided)
|
| 143 |
+
|
| 144 |
+
Returns:
|
| 145 |
+
True if index exists
|
| 146 |
+
"""
|
| 147 |
+
index_name = index_name or self.config.index_name
|
| 148 |
+
return self.client.indices.exists(index=index_name)
|
| 149 |
+
|
| 150 |
+
def get_document_count(self, index_name: Optional[str] = None) -> int:
|
| 151 |
+
"""
|
| 152 |
+
Get number of documents in index.
|
| 153 |
+
|
| 154 |
+
Args:
|
| 155 |
+
index_name: Name of index (uses config default if not provided)
|
| 156 |
+
|
| 157 |
+
Returns:
|
| 158 |
+
Document count
|
| 159 |
+
"""
|
| 160 |
+
index_name = index_name or self.config.index_name
|
| 161 |
+
|
| 162 |
+
try:
|
| 163 |
+
result = self.client.count(index=index_name)
|
| 164 |
+
return result["count"]
|
| 165 |
+
except Exception as e:
|
| 166 |
+
logger.error(f"Failed to get document count: {e}")
|
| 167 |
+
return 0
|
src/pipeline/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Pipeline orchestration for the multi-agent RAG system."""
|
| 2 |
+
|
| 3 |
+
from .orchestrator import RAGOrchestrator
|
| 4 |
+
|
| 5 |
+
__all__ = ["RAGOrchestrator"]
|
src/pipeline/orchestrator.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""RAG pipeline orchestrator coordinating all agents and retrieval."""
|
| 2 |
+
|
| 3 |
+
from typing import Dict, Any, List
|
| 4 |
+
from pydantic import BaseModel
|
| 5 |
+
from haystack import Document
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
from ..config import AppConfig
|
| 9 |
+
from ..agents.intent_agent import IntentAgent, IntentData
|
| 10 |
+
from ..agents.composer_agent import ComposerAgent, EmailDraft
|
| 11 |
+
from ..agents.fact_checker_agent import FactCheckerAgent, FactCheckResult
|
| 12 |
+
from ..retrieval.hybrid_retriever import HybridRetriever
|
| 13 |
+
from ..indexing.indexer import DocumentIndexer
|
| 14 |
+
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class PipelineResult(BaseModel):
|
| 19 |
+
"""Complete result from the RAG pipeline."""
|
| 20 |
+
|
| 21 |
+
query: str
|
| 22 |
+
intent: IntentData
|
| 23 |
+
retrieved_docs: List[Dict[str, Any]]
|
| 24 |
+
email_draft: EmailDraft
|
| 25 |
+
fact_check: FactCheckResult
|
| 26 |
+
processing_time: float = 0.0
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class RAGOrchestrator:
|
| 30 |
+
"""Orchestrates the multi-agent RAG pipeline."""
|
| 31 |
+
|
| 32 |
+
def __init__(self, config: AppConfig, document_indexer: DocumentIndexer):
|
| 33 |
+
"""
|
| 34 |
+
Initialize the RAG orchestrator.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
config: Application configuration
|
| 38 |
+
document_indexer: Document indexer instance (contains document store)
|
| 39 |
+
"""
|
| 40 |
+
self.config = config
|
| 41 |
+
|
| 42 |
+
# Initialize agents
|
| 43 |
+
self.intent_agent = IntentAgent(
|
| 44 |
+
api_key=config.llm.api_key,
|
| 45 |
+
model=f"openai:{config.llm.model_name}",
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
self.composer_agent = ComposerAgent(
|
| 49 |
+
api_key=config.llm.api_key,
|
| 50 |
+
model=f"openai:{config.llm.model_name}",
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
self.fact_checker_agent = FactCheckerAgent(
|
| 54 |
+
api_key=config.llm.api_key,
|
| 55 |
+
model=f"openai:{config.llm.model_name}",
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
# Initialize retriever
|
| 59 |
+
self.retriever = HybridRetriever(
|
| 60 |
+
document_store=document_indexer.document_store,
|
| 61 |
+
llm_config=config.llm,
|
| 62 |
+
retrieval_config=config.retrieval,
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
async def process_query(self, query: str) -> PipelineResult:
|
| 66 |
+
"""
|
| 67 |
+
Process a user query through the complete RAG pipeline.
|
| 68 |
+
|
| 69 |
+
Args:
|
| 70 |
+
query: User's query text
|
| 71 |
+
|
| 72 |
+
Returns:
|
| 73 |
+
Complete pipeline result
|
| 74 |
+
"""
|
| 75 |
+
import time
|
| 76 |
+
|
| 77 |
+
start_time = time.time()
|
| 78 |
+
|
| 79 |
+
logger.info(f"Processing query: {query[:100]}...")
|
| 80 |
+
|
| 81 |
+
try:
|
| 82 |
+
# Step 1: Extract intent
|
| 83 |
+
logger.info("Step 1: Extracting intent...")
|
| 84 |
+
intent = await self.intent_agent.extract_intent(query)
|
| 85 |
+
|
| 86 |
+
# Step 2: Retrieve relevant documents
|
| 87 |
+
logger.info("Step 2: Retrieving relevant documents...")
|
| 88 |
+
retrieved_docs = self.retriever.retrieve(query)
|
| 89 |
+
|
| 90 |
+
logger.info(f"Retrieved {len(retrieved_docs)} documents")
|
| 91 |
+
|
| 92 |
+
# Step 3: Compose email draft
|
| 93 |
+
logger.info("Step 3: Composing email draft...")
|
| 94 |
+
email_draft = await self.composer_agent.compose_email(
|
| 95 |
+
query=query,
|
| 96 |
+
intent=intent,
|
| 97 |
+
context_docs=retrieved_docs,
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Step 4: Fact-check the draft
|
| 101 |
+
logger.info("Step 4: Fact-checking email draft...")
|
| 102 |
+
fact_check = await self.fact_checker_agent.fact_check(
|
| 103 |
+
email_draft=email_draft,
|
| 104 |
+
source_docs=retrieved_docs,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
processing_time = time.time() - start_time
|
| 108 |
+
|
| 109 |
+
# Build result
|
| 110 |
+
result = PipelineResult(
|
| 111 |
+
query=query,
|
| 112 |
+
intent=intent,
|
| 113 |
+
retrieved_docs=self._serialize_documents(retrieved_docs),
|
| 114 |
+
email_draft=email_draft,
|
| 115 |
+
fact_check=fact_check,
|
| 116 |
+
processing_time=processing_time,
|
| 117 |
+
)
|
| 118 |
+
|
| 119 |
+
logger.info(f"Pipeline completed in {processing_time:.2f}s")
|
| 120 |
+
|
| 121 |
+
return result
|
| 122 |
+
|
| 123 |
+
except Exception as e:
|
| 124 |
+
logger.error(f"Error in pipeline: {e}")
|
| 125 |
+
raise
|
| 126 |
+
|
| 127 |
+
def _serialize_documents(self, documents: List[Document]) -> List[Dict[str, Any]]:
|
| 128 |
+
"""
|
| 129 |
+
Serialize Haystack documents to dictionaries.
|
| 130 |
+
|
| 131 |
+
Args:
|
| 132 |
+
documents: List of Haystack documents
|
| 133 |
+
|
| 134 |
+
Returns:
|
| 135 |
+
List of document dictionaries
|
| 136 |
+
"""
|
| 137 |
+
serialized = []
|
| 138 |
+
for doc in documents:
|
| 139 |
+
serialized.append(
|
| 140 |
+
{
|
| 141 |
+
"content": doc.content,
|
| 142 |
+
"score": doc.score,
|
| 143 |
+
"meta": doc.meta or {},
|
| 144 |
+
}
|
| 145 |
+
)
|
| 146 |
+
return serialized
|
| 147 |
+
|
| 148 |
+
async def refine_draft(
|
| 149 |
+
self,
|
| 150 |
+
original_query: str,
|
| 151 |
+
current_draft: str,
|
| 152 |
+
user_feedback: str,
|
| 153 |
+
retrieved_docs: List[Document],
|
| 154 |
+
) -> EmailDraft:
|
| 155 |
+
"""
|
| 156 |
+
Refine an email draft based on user feedback.
|
| 157 |
+
|
| 158 |
+
Args:
|
| 159 |
+
original_query: Original user query
|
| 160 |
+
current_draft: Current email draft text
|
| 161 |
+
user_feedback: User's feedback or refinement request
|
| 162 |
+
retrieved_docs: Previously retrieved documents
|
| 163 |
+
|
| 164 |
+
Returns:
|
| 165 |
+
Refined email draft
|
| 166 |
+
"""
|
| 167 |
+
logger.info("Refining email draft based on user feedback...")
|
| 168 |
+
|
| 169 |
+
# Create refinement prompt
|
| 170 |
+
refinement_query = f"""Original Query: {original_query}
|
| 171 |
+
|
| 172 |
+
Current Draft:
|
| 173 |
+
{current_draft}
|
| 174 |
+
|
| 175 |
+
User Feedback/Refinement Request:
|
| 176 |
+
{user_feedback}
|
| 177 |
+
|
| 178 |
+
Please revise the email draft according to the user's feedback while maintaining accuracy and professionalism."""
|
| 179 |
+
|
| 180 |
+
# Re-extract intent with refinement context
|
| 181 |
+
intent = await self.intent_agent.extract_intent(refinement_query)
|
| 182 |
+
|
| 183 |
+
# Compose refined draft
|
| 184 |
+
refined_draft = await self.composer_agent.compose_email(
|
| 185 |
+
query=refinement_query,
|
| 186 |
+
intent=intent,
|
| 187 |
+
context_docs=retrieved_docs,
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
logger.info("Email draft refined")
|
| 191 |
+
|
| 192 |
+
return refined_draft
|
src/retrieval/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Retrieval components for hybrid search."""
|
| 2 |
+
|
| 3 |
+
from .hybrid_retriever import HybridRetriever
|
| 4 |
+
|
| 5 |
+
__all__ = ["HybridRetriever"]
|
src/retrieval/hybrid_retriever.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Hybrid retriever combining BM25 and vector search."""
|
| 2 |
+
|
| 3 |
+
from typing import List, Dict, Any
|
| 4 |
+
from haystack import Document
|
| 5 |
+
from haystack.components.embedders import OpenAITextEmbedder
|
| 6 |
+
from haystack_integrations.document_stores.opensearch import OpenSearchDocumentStore
|
| 7 |
+
from haystack_integrations.components.retrievers.opensearch import (
|
| 8 |
+
OpenSearchBM25Retriever,
|
| 9 |
+
OpenSearchEmbeddingRetriever,
|
| 10 |
+
)
|
| 11 |
+
import logging
|
| 12 |
+
|
| 13 |
+
from ..config import RetrievalConfig, LLMConfig
|
| 14 |
+
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class HybridRetriever:
|
| 19 |
+
"""Retrieves documents using hybrid BM25 + vector search."""
|
| 20 |
+
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
document_store: OpenSearchDocumentStore,
|
| 24 |
+
llm_config: LLMConfig,
|
| 25 |
+
retrieval_config: RetrievalConfig,
|
| 26 |
+
):
|
| 27 |
+
"""
|
| 28 |
+
Initialize the hybrid retriever.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
document_store: OpenSearch document store
|
| 32 |
+
llm_config: LLM configuration for embeddings
|
| 33 |
+
retrieval_config: Retrieval configuration
|
| 34 |
+
"""
|
| 35 |
+
self.document_store = document_store
|
| 36 |
+
self.llm_config = llm_config
|
| 37 |
+
self.retrieval_config = retrieval_config
|
| 38 |
+
|
| 39 |
+
# Initialize BM25 retriever
|
| 40 |
+
self.bm25_retriever = OpenSearchBM25Retriever(
|
| 41 |
+
document_store=document_store,
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# Initialize embedding retriever
|
| 45 |
+
self.embedding_retriever = OpenSearchEmbeddingRetriever(
|
| 46 |
+
document_store=document_store,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Initialize text embedder for queries
|
| 50 |
+
self.text_embedder = OpenAITextEmbedder(
|
| 51 |
+
api_key=llm_config.api_key,
|
| 52 |
+
model=llm_config.embedding_model,
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
def retrieve(self, query: str) -> List[Document]:
|
| 56 |
+
"""
|
| 57 |
+
Retrieve documents using hybrid search.
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
query: Search query
|
| 61 |
+
|
| 62 |
+
Returns:
|
| 63 |
+
List of relevant documents with scores
|
| 64 |
+
"""
|
| 65 |
+
logger.info(f"Retrieving documents for query: {query[:100]}...")
|
| 66 |
+
|
| 67 |
+
try:
|
| 68 |
+
# Get BM25 results
|
| 69 |
+
logger.debug("Running BM25 retrieval...")
|
| 70 |
+
bm25_results = self.bm25_retriever.run(
|
| 71 |
+
query=query,
|
| 72 |
+
top_k=self.retrieval_config.top_k * 2, # Get more to merge
|
| 73 |
+
)
|
| 74 |
+
bm25_docs = bm25_results.get("documents", [])
|
| 75 |
+
logger.debug(f"BM25 retrieved {len(bm25_docs)} documents")
|
| 76 |
+
|
| 77 |
+
# Generate query embedding
|
| 78 |
+
logger.debug("Generating query embedding...")
|
| 79 |
+
embedding_result = self.text_embedder.run(text=query)
|
| 80 |
+
query_embedding = embedding_result.get("embedding")
|
| 81 |
+
|
| 82 |
+
if not query_embedding:
|
| 83 |
+
logger.warning("Failed to generate query embedding, using BM25 only")
|
| 84 |
+
return self._apply_score_threshold(bm25_docs)
|
| 85 |
+
|
| 86 |
+
# Get vector search results
|
| 87 |
+
logger.debug("Running vector retrieval...")
|
| 88 |
+
vector_results = self.embedding_retriever.run(
|
| 89 |
+
query_embedding=query_embedding,
|
| 90 |
+
top_k=self.retrieval_config.top_k * 2,
|
| 91 |
+
)
|
| 92 |
+
vector_docs = vector_results.get("documents", [])
|
| 93 |
+
logger.debug(f"Vector search retrieved {len(vector_docs)} documents")
|
| 94 |
+
|
| 95 |
+
# Merge and rank results
|
| 96 |
+
merged_docs = self._merge_results(bm25_docs, vector_docs)
|
| 97 |
+
|
| 98 |
+
# Apply score threshold and limit
|
| 99 |
+
final_docs = self._apply_score_threshold(merged_docs)
|
| 100 |
+
final_docs = final_docs[: self.retrieval_config.top_k]
|
| 101 |
+
|
| 102 |
+
logger.info(f"Retrieved {len(final_docs)} documents after hybrid ranking")
|
| 103 |
+
|
| 104 |
+
return final_docs
|
| 105 |
+
|
| 106 |
+
except Exception as e:
|
| 107 |
+
logger.error(f"Error during retrieval: {e}")
|
| 108 |
+
return []
|
| 109 |
+
|
| 110 |
+
def _merge_results(
|
| 111 |
+
self, bm25_docs: List[Document], vector_docs: List[Document]
|
| 112 |
+
) -> List[Document]:
|
| 113 |
+
"""
|
| 114 |
+
Merge BM25 and vector search results using weighted scoring.
|
| 115 |
+
|
| 116 |
+
Args:
|
| 117 |
+
bm25_docs: Documents from BM25 search
|
| 118 |
+
vector_docs: Documents from vector search
|
| 119 |
+
|
| 120 |
+
Returns:
|
| 121 |
+
Merged and ranked documents
|
| 122 |
+
"""
|
| 123 |
+
# Create score maps
|
| 124 |
+
doc_scores: Dict[str, Dict[str, Any]] = {}
|
| 125 |
+
|
| 126 |
+
# Process BM25 results
|
| 127 |
+
for doc in bm25_docs:
|
| 128 |
+
doc_id = doc.id or doc.content[:50]
|
| 129 |
+
bm25_score = doc.score or 0.0
|
| 130 |
+
|
| 131 |
+
if doc_id not in doc_scores:
|
| 132 |
+
doc_scores[doc_id] = {
|
| 133 |
+
"document": doc,
|
| 134 |
+
"bm25_score": 0.0,
|
| 135 |
+
"vector_score": 0.0,
|
| 136 |
+
}
|
| 137 |
+
doc_scores[doc_id]["bm25_score"] = bm25_score
|
| 138 |
+
|
| 139 |
+
# Process vector results
|
| 140 |
+
for doc in vector_docs:
|
| 141 |
+
doc_id = doc.id or doc.content[:50]
|
| 142 |
+
vector_score = doc.score or 0.0
|
| 143 |
+
|
| 144 |
+
if doc_id not in doc_scores:
|
| 145 |
+
doc_scores[doc_id] = {
|
| 146 |
+
"document": doc,
|
| 147 |
+
"bm25_score": 0.0,
|
| 148 |
+
"vector_score": 0.0,
|
| 149 |
+
}
|
| 150 |
+
doc_scores[doc_id]["vector_score"] = vector_score
|
| 151 |
+
|
| 152 |
+
# Normalize and combine scores
|
| 153 |
+
bm25_scores = [info["bm25_score"] for info in doc_scores.values()]
|
| 154 |
+
vector_scores = [info["vector_score"] for info in doc_scores.values()]
|
| 155 |
+
|
| 156 |
+
max_bm25 = max(bm25_scores) if bm25_scores else 1.0
|
| 157 |
+
max_vector = max(vector_scores) if vector_scores else 1.0
|
| 158 |
+
|
| 159 |
+
merged_docs = []
|
| 160 |
+
for doc_id, info in doc_scores.items():
|
| 161 |
+
# Normalize scores
|
| 162 |
+
norm_bm25 = info["bm25_score"] / max_bm25 if max_bm25 > 0 else 0.0
|
| 163 |
+
norm_vector = info["vector_score"] / max_vector if max_vector > 0 else 0.0
|
| 164 |
+
|
| 165 |
+
# Combine with weights
|
| 166 |
+
combined_score = (
|
| 167 |
+
self.retrieval_config.bm25_weight * norm_bm25
|
| 168 |
+
+ self.retrieval_config.vector_weight * norm_vector
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
doc = info["document"]
|
| 172 |
+
doc.score = combined_score
|
| 173 |
+
|
| 174 |
+
if doc.meta is None:
|
| 175 |
+
doc.meta = {}
|
| 176 |
+
doc.meta["bm25_score"] = info["bm25_score"]
|
| 177 |
+
doc.meta["vector_score"] = info["vector_score"]
|
| 178 |
+
doc.meta["combined_score"] = combined_score
|
| 179 |
+
|
| 180 |
+
merged_docs.append(doc)
|
| 181 |
+
|
| 182 |
+
# Sort by combined score
|
| 183 |
+
merged_docs.sort(key=lambda x: x.score or 0.0, reverse=True)
|
| 184 |
+
|
| 185 |
+
return merged_docs
|
| 186 |
+
|
| 187 |
+
def _apply_score_threshold(self, documents: List[Document]) -> List[Document]:
|
| 188 |
+
"""
|
| 189 |
+
Filter documents by minimum score threshold.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
documents: Documents to filter
|
| 193 |
+
|
| 194 |
+
Returns:
|
| 195 |
+
Filtered documents
|
| 196 |
+
"""
|
| 197 |
+
return [
|
| 198 |
+
doc
|
| 199 |
+
for doc in documents
|
| 200 |
+
if doc.score and doc.score >= self.retrieval_config.min_score
|
| 201 |
+
]
|
src/ui/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Gradio UI components."""
|
| 2 |
+
|
| 3 |
+
from .gradio_app import create_gradio_interface
|
| 4 |
+
|
| 5 |
+
__all__ = ["create_gradio_interface"]
|
src/ui/gradio_app.py
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Gradio UI for the RAG Email Assistant."""
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from typing import Tuple, List, Dict, Any
|
| 5 |
+
import logging
|
| 6 |
+
import asyncio
|
| 7 |
+
|
| 8 |
+
from ..config import get_config, AppConfig
|
| 9 |
+
from ..indexing.indexer import DocumentIndexer
|
| 10 |
+
from ..pipeline.orchestrator import RAGOrchestrator, PipelineResult
|
| 11 |
+
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class GradioEmailAssistant:
|
| 16 |
+
"""Gradio interface for the email assistant."""
|
| 17 |
+
|
| 18 |
+
def __init__(self, config: AppConfig):
|
| 19 |
+
"""
|
| 20 |
+
Initialize the Gradio assistant.
|
| 21 |
+
|
| 22 |
+
Args:
|
| 23 |
+
config: Application configuration
|
| 24 |
+
"""
|
| 25 |
+
self.config = config
|
| 26 |
+
|
| 27 |
+
# Initialize indexer and orchestrator
|
| 28 |
+
self.indexer = DocumentIndexer(
|
| 29 |
+
opensearch_config=config.opensearch,
|
| 30 |
+
llm_config=config.llm,
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
self.orchestrator = RAGOrchestrator(
|
| 34 |
+
config=config,
|
| 35 |
+
document_indexer=self.indexer,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
# Store last pipeline result for refinement
|
| 39 |
+
self.last_result: PipelineResult | None = None
|
| 40 |
+
|
| 41 |
+
async def process_query_async(
|
| 42 |
+
self, query: str
|
| 43 |
+
) -> Tuple[str, str, str, str, str, List[Dict[str, Any]]]:
|
| 44 |
+
"""
|
| 45 |
+
Process a user query asynchronously.
|
| 46 |
+
|
| 47 |
+
Args:
|
| 48 |
+
query: User query text
|
| 49 |
+
|
| 50 |
+
Returns:
|
| 51 |
+
Tuple of (subject, body, intent_info, fact_check_info, stats, sources)
|
| 52 |
+
"""
|
| 53 |
+
try:
|
| 54 |
+
# Process through pipeline
|
| 55 |
+
result = await self.orchestrator.process_query(query)
|
| 56 |
+
self.last_result = result
|
| 57 |
+
|
| 58 |
+
# Extract components
|
| 59 |
+
subject = result.email_draft.subject
|
| 60 |
+
body = result.email_draft.body
|
| 61 |
+
|
| 62 |
+
# Format intent information
|
| 63 |
+
intent_info = f"""**Action Type:** {result.intent.action_type}
|
| 64 |
+
**Topic:** {result.intent.topic}
|
| 65 |
+
**Language:** {result.intent.language}
|
| 66 |
+
**Urgency:** {result.intent.urgency}
|
| 67 |
+
**Key Entities:** {', '.join(result.intent.key_entities) if result.intent.key_entities else 'None'}
|
| 68 |
+
**Questions:** {', '.join(result.intent.specific_questions) if result.intent.specific_questions else 'None'}"""
|
| 69 |
+
|
| 70 |
+
# Format fact check information
|
| 71 |
+
accuracy_emoji = "β
" if result.fact_check.is_accurate else "β οΈ"
|
| 72 |
+
fact_check_info = f"""**Status:** {accuracy_emoji} {'Accurate' if result.fact_check.is_accurate else 'Issues Found'}
|
| 73 |
+
**Accuracy Score:** {result.fact_check.accuracy_score:.1%}
|
| 74 |
+
|
| 75 |
+
**Verified Claims:**
|
| 76 |
+
{self._format_list(result.fact_check.verified_claims)}
|
| 77 |
+
|
| 78 |
+
**Issues Found:**
|
| 79 |
+
{self._format_list(result.fact_check.issues_found) if result.fact_check.issues_found else 'None'}
|
| 80 |
+
|
| 81 |
+
**Suggestions:**
|
| 82 |
+
{self._format_list(result.fact_check.suggestions) if result.fact_check.suggestions else 'None'}"""
|
| 83 |
+
|
| 84 |
+
# Format statistics
|
| 85 |
+
stats = f"""**Processing Time:** {result.processing_time:.2f}s
|
| 86 |
+
**Documents Retrieved:** {len(result.retrieved_docs)}
|
| 87 |
+
**Confidence:** {result.email_draft.confidence:.1%}"""
|
| 88 |
+
|
| 89 |
+
# Format sources
|
| 90 |
+
sources = []
|
| 91 |
+
for i, doc in enumerate(result.retrieved_docs, 1):
|
| 92 |
+
sources.append(
|
| 93 |
+
{
|
| 94 |
+
"Number": i,
|
| 95 |
+
"Source": doc["meta"].get("source_file", "Unknown"),
|
| 96 |
+
"Score": f"{doc['score']:.3f}",
|
| 97 |
+
"Preview": doc["content"][:200] + "...",
|
| 98 |
+
}
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
return subject, body, intent_info, fact_check_info, stats, sources
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
logger.error(f"Error processing query: {e}")
|
| 105 |
+
error_msg = f"Error: {str(e)}"
|
| 106 |
+
return (
|
| 107 |
+
"Error",
|
| 108 |
+
error_msg,
|
| 109 |
+
error_msg,
|
| 110 |
+
error_msg,
|
| 111 |
+
error_msg,
|
| 112 |
+
[],
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
def process_query_sync(
|
| 116 |
+
self, query: str
|
| 117 |
+
) -> Tuple[str, str, str, str, str, List[Dict[str, Any]]]:
|
| 118 |
+
"""Synchronous wrapper for async query processing."""
|
| 119 |
+
return asyncio.run(self.process_query_async(query))
|
| 120 |
+
|
| 121 |
+
async def refine_draft_async(
|
| 122 |
+
self, subject: str, body: str, feedback: str
|
| 123 |
+
) -> Tuple[str, str]:
|
| 124 |
+
"""
|
| 125 |
+
Refine the current draft based on user feedback.
|
| 126 |
+
|
| 127 |
+
Args:
|
| 128 |
+
subject: Current subject
|
| 129 |
+
body: Current body
|
| 130 |
+
feedback: User feedback
|
| 131 |
+
|
| 132 |
+
Returns:
|
| 133 |
+
Tuple of (new_subject, new_body)
|
| 134 |
+
"""
|
| 135 |
+
if not self.last_result:
|
| 136 |
+
return subject, "Error: No draft to refine. Please generate a draft first."
|
| 137 |
+
|
| 138 |
+
try:
|
| 139 |
+
# Get retrieved docs from last result
|
| 140 |
+
from haystack import Document
|
| 141 |
+
|
| 142 |
+
retrieved_docs = [
|
| 143 |
+
Document(content=doc["content"], meta=doc["meta"])
|
| 144 |
+
for doc in self.last_result.retrieved_docs
|
| 145 |
+
]
|
| 146 |
+
|
| 147 |
+
# Refine the draft
|
| 148 |
+
refined = await self.orchestrator.refine_draft(
|
| 149 |
+
original_query=self.last_result.query,
|
| 150 |
+
current_draft=body,
|
| 151 |
+
user_feedback=feedback,
|
| 152 |
+
retrieved_docs=retrieved_docs,
|
| 153 |
+
)
|
| 154 |
+
|
| 155 |
+
return refined.subject, refined.body
|
| 156 |
+
|
| 157 |
+
except Exception as e:
|
| 158 |
+
logger.error(f"Error refining draft: {e}")
|
| 159 |
+
return subject, f"Error refining draft: {str(e)}"
|
| 160 |
+
|
| 161 |
+
def refine_draft_sync(self, subject: str, body: str, feedback: str) -> Tuple[str, str]:
|
| 162 |
+
"""Synchronous wrapper for async draft refinement."""
|
| 163 |
+
return asyncio.run(self.refine_draft_async(subject, body, feedback))
|
| 164 |
+
|
| 165 |
+
def _format_list(self, items: List[str]) -> str:
|
| 166 |
+
"""Format a list of items as markdown."""
|
| 167 |
+
if not items:
|
| 168 |
+
return "None"
|
| 169 |
+
return "\n".join([f"- {item}" for item in items])
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def create_gradio_interface() -> gr.Blocks:
|
| 173 |
+
"""
|
| 174 |
+
Create and configure the Gradio interface.
|
| 175 |
+
|
| 176 |
+
Returns:
|
| 177 |
+
Gradio Blocks interface
|
| 178 |
+
"""
|
| 179 |
+
# Load configuration
|
| 180 |
+
config = get_config()
|
| 181 |
+
|
| 182 |
+
# Initialize assistant
|
| 183 |
+
assistant = GradioEmailAssistant(config)
|
| 184 |
+
|
| 185 |
+
# Create interface
|
| 186 |
+
with gr.Blocks(
|
| 187 |
+
title="BFH Student Administration Email Assistant",
|
| 188 |
+
theme=gr.themes.Soft(),
|
| 189 |
+
) as demo:
|
| 190 |
+
gr.Markdown(
|
| 191 |
+
"""
|
| 192 |
+
# π§ BFH Student Administration Email Assistant
|
| 193 |
+
|
| 194 |
+
AI-powered email assistant for university administrative staff using RAG (Retrieval-Augmented Generation).
|
| 195 |
+
|
| 196 |
+
**Features:**
|
| 197 |
+
- Intent extraction from student queries
|
| 198 |
+
- Hybrid retrieval (BM25 + semantic search)
|
| 199 |
+
- Multi-agent email composition
|
| 200 |
+
- Automated fact-checking
|
| 201 |
+
- Draft refinement based on feedback
|
| 202 |
+
"""
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
with gr.Row():
|
| 206 |
+
with gr.Column(scale=1):
|
| 207 |
+
gr.Markdown("### π Query Input")
|
| 208 |
+
query_input = gr.Textbox(
|
| 209 |
+
label="Student Query",
|
| 210 |
+
placeholder="Enter the student's question or email content here...",
|
| 211 |
+
lines=5,
|
| 212 |
+
)
|
| 213 |
+
process_btn = gr.Button("Generate Email Draft", variant="primary")
|
| 214 |
+
|
| 215 |
+
with gr.Column(scale=1):
|
| 216 |
+
gr.Markdown("### π Analysis")
|
| 217 |
+
intent_output = gr.Markdown(label="Intent Analysis")
|
| 218 |
+
stats_output = gr.Markdown(label="Statistics")
|
| 219 |
+
|
| 220 |
+
gr.Markdown("### βοΈ Email Draft")
|
| 221 |
+
|
| 222 |
+
with gr.Row():
|
| 223 |
+
with gr.Column(scale=2):
|
| 224 |
+
subject_output = gr.Textbox(label="Subject", lines=1)
|
| 225 |
+
body_output = gr.Textbox(label="Body", lines=15)
|
| 226 |
+
|
| 227 |
+
with gr.Column(scale=1):
|
| 228 |
+
fact_check_output = gr.Markdown(label="Fact Check Results")
|
| 229 |
+
|
| 230 |
+
gr.Markdown("### π Refine Draft")
|
| 231 |
+
|
| 232 |
+
with gr.Row():
|
| 233 |
+
feedback_input = gr.Textbox(
|
| 234 |
+
label="Feedback / Refinement Instructions",
|
| 235 |
+
placeholder="E.g., 'Make it more formal', 'Add information about deadlines', 'Translate to English'",
|
| 236 |
+
lines=3,
|
| 237 |
+
)
|
| 238 |
+
refine_btn = gr.Button("Refine Draft", variant="secondary")
|
| 239 |
+
|
| 240 |
+
gr.Markdown("### π Retrieved Sources")
|
| 241 |
+
sources_output = gr.Dataframe(
|
| 242 |
+
headers=["Number", "Source", "Score", "Preview"],
|
| 243 |
+
label="Source Documents",
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
# Event handlers
|
| 247 |
+
process_btn.click(
|
| 248 |
+
fn=assistant.process_query_sync,
|
| 249 |
+
inputs=[query_input],
|
| 250 |
+
outputs=[
|
| 251 |
+
subject_output,
|
| 252 |
+
body_output,
|
| 253 |
+
intent_output,
|
| 254 |
+
fact_check_output,
|
| 255 |
+
stats_output,
|
| 256 |
+
sources_output,
|
| 257 |
+
],
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
refine_btn.click(
|
| 261 |
+
fn=assistant.refine_draft_sync,
|
| 262 |
+
inputs=[subject_output, body_output, feedback_input],
|
| 263 |
+
outputs=[subject_output, body_output],
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
gr.Markdown(
|
| 267 |
+
"""
|
| 268 |
+
---
|
| 269 |
+
**Note:** This system uses AI to assist with email composition. Always review and verify the generated content before sending.
|
| 270 |
+
"""
|
| 271 |
+
)
|
| 272 |
+
|
| 273 |
+
return demo
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
if __name__ == "__main__":
|
| 277 |
+
# Configure logging
|
| 278 |
+
logging.basicConfig(
|
| 279 |
+
level=logging.INFO,
|
| 280 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
|
| 281 |
+
)
|
| 282 |
+
|
| 283 |
+
# Create and launch interface
|
| 284 |
+
demo = create_gradio_interface()
|
| 285 |
+
demo.launch()
|