Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,4 +7,311 @@ with gr.Blocks(fill_height=True) as demo:
|
|
| 7 |
button = gr.LoginButton("Sign in")
|
| 8 |
gr.load("models/black-forest-labs/FLUX.1-dev", accept_token=button, provider="hf-inference")
|
| 9 |
|
| 10 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
button = gr.LoginButton("Sign in")
|
| 8 |
gr.load("models/black-forest-labs/FLUX.1-dev", accept_token=button, provider="hf-inference")
|
| 9 |
|
| 10 |
+
demo.launch()
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
import logging
|
| 14 |
+
import random
|
| 15 |
+
import warnings
|
| 16 |
+
import os
|
| 17 |
+
import gradio as gr
|
| 18 |
+
import numpy as np
|
| 19 |
+
import spaces
|
| 20 |
+
import torch
|
| 21 |
+
from diffusers import FluxControlNetModel
|
| 22 |
+
from diffusers.pipelines import FluxControlNetPipeline
|
| 23 |
+
from gradio_imageslider import ImageSlider
|
| 24 |
+
from PIL import Image
|
| 25 |
+
from huggingface_hub import snapshot_download
|
| 26 |
+
from huggingface_hub import login
|
| 27 |
+
import subprocess
|
| 28 |
+
|
| 29 |
+
css = """
|
| 30 |
+
#col-container {
|
| 31 |
+
margin: 0 auto;
|
| 32 |
+
max-width: 512px;
|
| 33 |
+
}
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
if torch.cuda.is_available():
|
| 37 |
+
power_device = "GPU"
|
| 38 |
+
device = "cuda"
|
| 39 |
+
else:
|
| 40 |
+
power_device = "CPU"
|
| 41 |
+
device = "cpu"
|
| 42 |
+
|
| 43 |
+
huggingface_token = os.getenv("token1704")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def login_to_huggingface(token):
|
| 47 |
+
command = f"huggingface-cli login --token {token} --add-to-git-credential"
|
| 48 |
+
process = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
| 49 |
+
stdout, stderr = process.communicate()
|
| 50 |
+
if process.returncode == 0:
|
| 51 |
+
print("Login successful")
|
| 52 |
+
else:
|
| 53 |
+
print(f"Error: {stderr.decode()}")
|
| 54 |
+
|
| 55 |
+
login_to_huggingface(huggingface_token)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
if huggingface_token:
|
| 59 |
+
login(token=huggingface_token)
|
| 60 |
+
|
| 61 |
+
model_path = snapshot_download(
|
| 62 |
+
repo_id="black-forest-labs/FLUX.1-dev",
|
| 63 |
+
repo_type="model",
|
| 64 |
+
ignore_patterns=["*.md", "*..gitattributes"],
|
| 65 |
+
local_dir="FLUX.1-dev",
|
| 66 |
+
token=huggingface_token, # type a new token-id.
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Load pipeline
|
| 70 |
+
controlnet = FluxControlNetModel.from_pretrained(
|
| 71 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
| 72 |
+
).to(device)
|
| 73 |
+
pipe = FluxControlNetPipeline.from_pretrained(
|
| 74 |
+
model_path, controlnet=controlnet, torch_dtype=torch.bfloat16
|
| 75 |
+
)
|
| 76 |
+
pipe.to(device)
|
| 77 |
+
|
| 78 |
+
MAX_SEED = 1000000
|
| 79 |
+
MAX_PIXEL_BUDGET = 1024 * 1024
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def process_input(input_image, upscale_factor, **kwargs):
|
| 84 |
+
w, h = input_image.size
|
| 85 |
+
w_original, h_original = w, h
|
| 86 |
+
aspect_ratio = w / h
|
| 87 |
+
|
| 88 |
+
was_resized = False
|
| 89 |
+
|
| 90 |
+
if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET:
|
| 91 |
+
warnings.warn(
|
| 92 |
+
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels."
|
| 93 |
+
)
|
| 94 |
+
gr.Info(
|
| 95 |
+
f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget."
|
| 96 |
+
)
|
| 97 |
+
input_image = input_image.resize(
|
| 98 |
+
(
|
| 99 |
+
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
|
| 100 |
+
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
|
| 101 |
+
)
|
| 102 |
+
)
|
| 103 |
+
was_resized = True
|
| 104 |
+
|
| 105 |
+
# resize to multiple of 8
|
| 106 |
+
w, h = input_image.size
|
| 107 |
+
w = w - w % 8
|
| 108 |
+
h = h - h % 8
|
| 109 |
+
|
| 110 |
+
return input_image.resize((w, h)), w_original, h_original, was_resized
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
@spaces.GPU#(duration=42)
|
| 114 |
+
def infer(
|
| 115 |
+
seed,
|
| 116 |
+
randomize_seed,
|
| 117 |
+
input_image,
|
| 118 |
+
num_inference_steps,
|
| 119 |
+
upscale_factor,
|
| 120 |
+
controlnet_conditioning_scale,
|
| 121 |
+
progress=gr.Progress(track_tqdm=True),
|
| 122 |
+
):
|
| 123 |
+
if randomize_seed:
|
| 124 |
+
seed = random.randint(0, MAX_SEED)
|
| 125 |
+
true_input_image = input_image
|
| 126 |
+
input_image, w_original, h_original, was_resized = process_input(
|
| 127 |
+
input_image, upscale_factor
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# rescale with upscale factor
|
| 131 |
+
w, h = input_image.size
|
| 132 |
+
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
| 133 |
+
|
| 134 |
+
generator = torch.Generator().manual_seed(seed)
|
| 135 |
+
|
| 136 |
+
gr.Info("Upscaling image...")
|
| 137 |
+
image = pipe(
|
| 138 |
+
prompt="",
|
| 139 |
+
control_image=control_image,
|
| 140 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 141 |
+
num_inference_steps=num_inference_steps,
|
| 142 |
+
guidance_scale=3.5,
|
| 143 |
+
height=control_image.size[1],
|
| 144 |
+
width=control_image.size[0],
|
| 145 |
+
generator=generator,
|
| 146 |
+
).images[0]
|
| 147 |
+
|
| 148 |
+
if was_resized:
|
| 149 |
+
gr.Info(
|
| 150 |
+
f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size."
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# resize to target desired size
|
| 154 |
+
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
| 155 |
+
image.save("output.jpg")
|
| 156 |
+
|
| 157 |
+
# convert to numpy
|
| 158 |
+
return [true_input_image, image, seed]
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def create_snow_effect():
|
| 163 |
+
# CSS 스타일 정의
|
| 164 |
+
snow_css = """
|
| 165 |
+
@keyframes snowfall {
|
| 166 |
+
0% {
|
| 167 |
+
transform: translateY(-10vh) translateX(0);
|
| 168 |
+
opacity: 1;
|
| 169 |
+
}
|
| 170 |
+
100% {
|
| 171 |
+
transform: translateY(100vh) translateX(100px);
|
| 172 |
+
opacity: 0.3;
|
| 173 |
+
}
|
| 174 |
+
}
|
| 175 |
+
.snowflake {
|
| 176 |
+
position: fixed;
|
| 177 |
+
color: white;
|
| 178 |
+
font-size: 1.5em;
|
| 179 |
+
user-select: none;
|
| 180 |
+
z-index: 1000;
|
| 181 |
+
pointer-events: none;
|
| 182 |
+
animation: snowfall linear infinite;
|
| 183 |
+
}
|
| 184 |
+
"""
|
| 185 |
+
|
| 186 |
+
# JavaScript 코드 정의
|
| 187 |
+
snow_js = """
|
| 188 |
+
function createSnowflake() {
|
| 189 |
+
const snowflake = document.createElement('div');
|
| 190 |
+
snowflake.innerHTML = '❄';
|
| 191 |
+
snowflake.className = 'snowflake';
|
| 192 |
+
snowflake.style.left = Math.random() * 100 + 'vw';
|
| 193 |
+
snowflake.style.animationDuration = Math.random() * 3 + 2 + 's';
|
| 194 |
+
snowflake.style.opacity = Math.random();
|
| 195 |
+
document.body.appendChild(snowflake);
|
| 196 |
+
|
| 197 |
+
setTimeout(() => {
|
| 198 |
+
snowflake.remove();
|
| 199 |
+
}, 5000);
|
| 200 |
+
}
|
| 201 |
+
setInterval(createSnowflake, 200);
|
| 202 |
+
"""
|
| 203 |
+
|
| 204 |
+
# CSS와 JavaScript를 결합한 HTML
|
| 205 |
+
snow_html = f"""
|
| 206 |
+
<style>
|
| 207 |
+
{snow_css}
|
| 208 |
+
</style>
|
| 209 |
+
<script>
|
| 210 |
+
{snow_js}
|
| 211 |
+
</script>
|
| 212 |
+
"""
|
| 213 |
+
|
| 214 |
+
return gr.HTML(snow_html)
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
| 218 |
+
|
| 219 |
+
create_snow_effect()
|
| 220 |
+
with gr.Row():
|
| 221 |
+
run_button = gr.Button(value="Run")
|
| 222 |
+
|
| 223 |
+
with gr.Row():
|
| 224 |
+
with gr.Column(scale=4):
|
| 225 |
+
input_im = gr.Image(label="Input Image", type="pil")
|
| 226 |
+
with gr.Column(scale=1):
|
| 227 |
+
num_inference_steps = gr.Slider(
|
| 228 |
+
label="Number of Inference Steps",
|
| 229 |
+
minimum=8,
|
| 230 |
+
maximum=50,
|
| 231 |
+
step=1,
|
| 232 |
+
value=28,
|
| 233 |
+
)
|
| 234 |
+
upscale_factor = gr.Slider(
|
| 235 |
+
label="Upscale Factor",
|
| 236 |
+
minimum=1,
|
| 237 |
+
maximum=4,
|
| 238 |
+
step=1,
|
| 239 |
+
value=4,
|
| 240 |
+
)
|
| 241 |
+
controlnet_conditioning_scale = gr.Slider(
|
| 242 |
+
label="Controlnet Conditioning Scale",
|
| 243 |
+
minimum=0.1,
|
| 244 |
+
maximum=1.5,
|
| 245 |
+
step=0.1,
|
| 246 |
+
value=0.6,
|
| 247 |
+
)
|
| 248 |
+
seed = gr.Slider(
|
| 249 |
+
label="Seed",
|
| 250 |
+
minimum=0,
|
| 251 |
+
maximum=MAX_SEED,
|
| 252 |
+
step=1,
|
| 253 |
+
value=42,
|
| 254 |
+
)
|
| 255 |
+
|
| 256 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 257 |
+
|
| 258 |
+
with gr.Row():
|
| 259 |
+
result = ImageSlider(label="Input / Output", type="pil", interactive=True)
|
| 260 |
+
|
| 261 |
+
examples = gr.Examples(
|
| 262 |
+
examples=[
|
| 263 |
+
[42, False, "z1.webp", 28, 4, 0.6],
|
| 264 |
+
[42, False, "z2.webp", 28, 4, 0.6],
|
| 265 |
+
|
| 266 |
+
],
|
| 267 |
+
inputs=[
|
| 268 |
+
seed,
|
| 269 |
+
randomize_seed,
|
| 270 |
+
input_im,
|
| 271 |
+
num_inference_steps,
|
| 272 |
+
upscale_factor,
|
| 273 |
+
controlnet_conditioning_scale,
|
| 274 |
+
],
|
| 275 |
+
fn=infer,
|
| 276 |
+
outputs=result,
|
| 277 |
+
cache_examples="lazy",
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
# examples = gr.Examples(
|
| 281 |
+
# examples=[
|
| 282 |
+
# #[42, False, "examples/image_1.jpg", 28, 4, 0.6],
|
| 283 |
+
# [42, False, "examples/image_2.jpg", 28, 4, 0.6],
|
| 284 |
+
# #[42, False, "examples/image_3.jpg", 28, 4, 0.6],
|
| 285 |
+
# #[42, False, "examples/image_4.jpg", 28, 4, 0.6],
|
| 286 |
+
# [42, False, "examples/image_5.jpg", 28, 4, 0.6],
|
| 287 |
+
# [42, False, "examples/image_6.jpg", 28, 4, 0.6],
|
| 288 |
+
# [42, False, "examples/image_7.jpg", 28, 4, 0.6],
|
| 289 |
+
# ],
|
| 290 |
+
# inputs=[
|
| 291 |
+
# seed,
|
| 292 |
+
# randomize_seed,
|
| 293 |
+
# input_im,
|
| 294 |
+
# num_inference_steps,
|
| 295 |
+
# upscale_factor,
|
| 296 |
+
# controlnet_conditioning_scale,
|
| 297 |
+
# ],
|
| 298 |
+
# )
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
gr.on(
|
| 302 |
+
[run_button.click],
|
| 303 |
+
fn=infer,
|
| 304 |
+
inputs=[
|
| 305 |
+
seed,
|
| 306 |
+
randomize_seed,
|
| 307 |
+
input_im,
|
| 308 |
+
num_inference_steps,
|
| 309 |
+
upscale_factor,
|
| 310 |
+
controlnet_conditioning_scale,
|
| 311 |
+
],
|
| 312 |
+
outputs=result,
|
| 313 |
+
show_api=False,
|
| 314 |
+
# show_progress="minimal",
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
demo.queue().launch(share=False, show_api=False)
|