import gradio as gr import logging import random import warnings import os import numpy as np import spaces import torch from diffusers import FluxControlNetModel from diffusers.pipelines import FluxControlNetPipeline from gradio_imageslider import ImageSlider from PIL import Image from huggingface_hub import snapshot_download from huggingface_hub import login import subprocess css = """ #col-container { margin: 0 auto; max-width: 512px; } """ if torch.cuda.is_available(): power_device = "GPU" device = "cuda" else: power_device = "CPU" device = "cpu" huggingface_token = os.getenv("token1704") def login_to_huggingface(): if huggingface_token: login(token=huggingface_token) model_path = snapshot_download( repo_id="black-forest-labs/FLUX.1-dev", repo_type="model", ignore_patterns=["*.md", "*..gitattributes"], local_dir="FLUX.1-dev", token=huggingface_token, # type a new token-id. ) controlnet = FluxControlNetModel.from_pretrained( "jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16 ).to(device) pipe = FluxControlNetPipeline.from_pretrained( model_path, controlnet=controlnet, torch_dtype=torch.bfloat16 ) pipe.to(device) MAX_SEED = 1000000 MAX_PIXEL_BUDGET = 1024 * 1024 def process_input(input_image, upscale_factor, **kwargs): w, h = input_image.size w_original, h_original = w, h aspect_ratio = w / h was_resized = False if w * h * upscale_factor**2 > MAX_PIXEL_BUDGET: warnings.warn( f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels." ) gr.Info( f"Requested output image is too large ({w * upscale_factor}x{h * upscale_factor}). Resizing input to ({int(aspect_ratio * MAX_PIXEL_BUDGET ** 0.5 // upscale_factor), int(MAX_PIXEL_BUDGET ** 0.5 // aspect_ratio // upscale_factor)}) pixels budget." ) input_image = input_image.resize( ( int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor), int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor), ) ) was_resized = True # resize to multiple of 8 w, h = input_image.size w = w - w % 8 h = h - h % 8 return input_image.resize((w, h)), w_original, h_original, was_resized @spaces.GPU#(duration=42) def infer( seed, randomize_seed, input_image, num_inference_steps, upscale_factor, controlnet_conditioning_scale, progress=gr.Progress(track_tqdm=True), ): if randomize_seed: seed = random.randint(0, MAX_SEED) true_input_image = input_image input_image, w_original, h_original, was_resized = process_input( input_image, upscale_factor ) # rescale with upscale factor w, h = input_image.size control_image = input_image.resize((w * upscale_factor, h * upscale_factor)) generator = torch.Generator().manual_seed(seed) gr.Info("Upscaling image...") image = pipe( prompt="", control_image=control_image, controlnet_conditioning_scale=controlnet_conditioning_scale, num_inference_steps=num_inference_steps, guidance_scale=3.5, height=control_image.size[1], width=control_image.size[0], generator=generator, ).images[0] if was_resized: gr.Info( f"Resizing output image to targeted {w_original * upscale_factor}x{h_original * upscale_factor} size." ) # resize to target desired size image = image.resize((w_original * upscale_factor, h_original * upscale_factor)) image.save("output.jpg") # convert to numpy return [true_input_image, image, seed] with gr.Blocks() as demo: with gr.Row(): button = gr.LoginButton("Sign in") gr.load("models/black-forest-labs/FLUX.1-dev", accept_token=button, provider="hf-inference") # with gr.Row(): # run_button = gr.Button(value="Run") # with gr.Row(): # with gr.Column(scale=4): # input_im = gr.Image(label="Input Image", type="pil") # with gr.Column(scale=1): # num_inference_steps = gr.Slider( # label="Number of Inference Steps", # minimum=8, # maximum=50, # step=1, # value=28, # ) # upscale_factor = gr.Slider( # label="Upscale Factor", # minimum=1, # maximum=4, # step=1, # value=4, # ) # controlnet_conditioning_scale = gr.Slider( # label="Controlnet Conditioning Scale", # minimum=0.1, # maximum=1.5, # step=0.1, # value=0.6, # ) # seed = gr.Slider( # label="Seed", # minimum=0, # maximum=MAX_SEED, # step=1, # value=42, # ) # randomize_seed = gr.Checkbox(label="Randomize seed", value=True) # with gr.Row(): # result = ImageSlider(label="Input / Output", type="pil", interactive=True) # examples = gr.Examples( # examples=[ # [42, False, "z1.webp", 28, 4, 0.6], # [42, False, "z2.webp", 28, 4, 0.6], # ], # inputs=[ # seed, # randomize_seed, # input_im, # num_inference_steps, # upscale_factor, # controlnet_conditioning_scale, # ], # fn=infer, # outputs=result, # cache_examples="lazy", # ) # gr.on( # [run_button.click], # fn=infer, # inputs=[ # seed, # randomize_seed, # input_im, # num_inference_steps, # upscale_factor, # controlnet_conditioning_scale, # ], # outputs=result, # show_api=False, # # show_progress="minimal", # ) login_to_huggingface() demo.queue().launch(share=True, show_api=True) @app.get("/") def read_root(): return {"message": "Hello, World!"} @app.get("/items/{item_id}") def read_item(item_id: int, q: str = None): return {"item_id": item_id, "q": q}