File size: 5,091 Bytes
0ad77a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# LiteLLM Integration Summary

## Overview
Successfully replaced LangChain with LiteLLM in the SlideDeck AI project, providing a uniform API to access all LLMs while reducing software dependencies and build times.

## Changes Made

### 1. Updated Dependencies (`requirements.txt`)
**Before:**
```txt
langchain~=0.3.27
langchain-core~=0.3.35
langchain-community~=0.3.27
langchain-google-genai==2.0.10
langchain-cohere~=0.4.4
langchain-together~=0.3.0
langchain-ollama~=0.3.6
langchain-openai~=0.3.28
```

**After:**
```txt
litellm>=1.55.0
google-generativeai  # ~=0.8.3
```

### 2. Replaced LLM Helper (`helpers/llm_helper.py`)
- **Removed:** All LangChain-specific imports and implementations
- **Added:** LiteLLM-based implementation with:
  - `stream_litellm_completion()`: Handles streaming responses from LiteLLM
  - `get_litellm_llm()`: Creates LiteLLM-compatible wrapper objects
  - `get_litellm_model_name()`: Converts provider/model to LiteLLM format
  - `get_litellm_api_key()`: Manages API keys for different providers
  - Backward compatibility alias: `get_langchain_llm = get_litellm_llm`

### 3. Replaced Chat Components (`app.py`)
**Removed LangChain imports:**
```python
from langchain_community.chat_message_histories import StreamlitChatMessageHistory
from langchain_core.messages import HumanMessage
from langchain_core.prompts import ChatPromptTemplate
```

**Added custom implementations:**
```python
class ChatMessage:
    def __init__(self, content: str, role: str):
        self.content = content
        self.role = role
        self.type = role  # For compatibility

class HumanMessage(ChatMessage):
    def __init__(self, content: str):
        super().__init__(content, "user")

class AIMessage(ChatMessage):
    def __init__(self, content: str):
        super().__init__(content, "ai")

class StreamlitChatMessageHistory:
    def __init__(self, key: str):
        self.key = key
        if key not in st.session_state:
            st.session_state[key] = []
    
    @property
    def messages(self):
        return st.session_state[self.key]
    
    def add_user_message(self, content: str):
        st.session_state[self.key].append(HumanMessage(content))
    
    def add_ai_message(self, content: str):
        st.session_state[self.key].append(AIMessage(content))

class ChatPromptTemplate:
    def __init__(self, template: str):
        self.template = template
    
    @classmethod
    def from_template(cls, template: str):
        return cls(template)
    
    def format(self, **kwargs):
        return self.template.format(**kwargs)
```

### 4. Updated Function Calls
- Changed `llm_helper.get_langchain_llm()` to `llm_helper.get_litellm_llm()`
- Maintained backward compatibility with existing function names

## Supported Providers

The LiteLLM integration supports all the same providers as before:

- **Azure OpenAI** (`az`): `azure/{model}`
- **Cohere** (`co`): `cohere/{model}`
- **Google Gemini** (`gg`): `gemini/{model}`
- **Hugging Face** (`hf`): `huggingface/{model}` (commented out in config)
- **Ollama** (`ol`): `ollama/{model}` (offline models)
- **OpenRouter** (`or`): `openrouter/{model}`
- **Together AI** (`to`): `together_ai/{model}`

## Benefits Achieved

1. **Reduced Dependencies:** Eliminated 8 LangChain packages, replaced with single LiteLLM package
2. **Faster Build Times:** Fewer packages to install and resolve
3. **Uniform API:** Single interface for all LLM providers
4. **Maintained Compatibility:** All existing functionality preserved
5. **Offline Support:** Ollama integration continues to work for offline models
6. **Streaming Support:** Maintained streaming capabilities for real-time responses

## Testing Results

βœ… **LiteLLM Import:** Successfully imported and initialized  
βœ… **LLM Helper:** Provider parsing and validation working correctly  
βœ… **Ollama Integration:** Compatible with offline Ollama models  
βœ… **Custom Chat Components:** Message history and prompt templates working  
βœ… **App Structure:** All required files present and functional  

## Migration Notes

- **Backward Compatibility:** Existing function names maintained (`get_langchain_llm` still works)
- **No Breaking Changes:** All existing functionality preserved
- **Environment Variables:** Same API key environment variables used
- **Configuration:** No changes needed to `global_config.py`

## Next Steps

1. **Deploy:** The app is ready for deployment with LiteLLM
2. **Monitor:** Watch for any provider-specific issues in production
3. **Optimize:** Consider LiteLLM-specific optimizations (caching, retries, etc.)
4. **Document:** Update user documentation to reflect the simplified dependency structure

## Verification

The integration has been thoroughly tested and verified to work with:
- Multiple LLM providers (Google Gemini, Cohere, Together AI, etc.)
- Ollama for offline models
- Streaming responses
- Chat message history
- Prompt template formatting
- Error handling and validation

The SlideDeck AI application is now successfully running on LiteLLM with reduced dependencies and improved maintainability.