Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,7 +19,7 @@ from sklearn.multiclass import OneVsRestClassifier
|
|
| 19 |
from sklearn.pipeline import Pipeline
|
| 20 |
from sklearn.metrics import f1_score
|
| 21 |
|
| 22 |
-
# ---------------- Storage paths
|
| 23 |
def _pick_data_dir():
|
| 24 |
if os.path.isdir("/data") and os.access("/data", os.W_OK):
|
| 25 |
return "/data"
|
|
@@ -28,8 +28,8 @@ def _pick_data_dir():
|
|
| 28 |
DATA_DIR = os.getenv("MM_DATA_DIR", _pick_data_dir())
|
| 29 |
os.makedirs(DATA_DIR, exist_ok=True)
|
| 30 |
DB_PATH = os.path.join(DATA_DIR, "moodmirror.db")
|
| 31 |
-
MODEL_PATH = os.path.join(DATA_DIR, "goemo_sklearn.joblib")
|
| 32 |
-
MODEL_VERSION = "v1-tfidf-lr-ovr"
|
| 33 |
|
| 34 |
print(f"[MM] Using data dir: {DATA_DIR}")
|
| 35 |
print(f"[MM] SQLite path: {DB_PATH}")
|
|
@@ -48,7 +48,7 @@ CRISIS_NUMBERS = {
|
|
| 48 |
"Other / Not listed": "Call your local emergency number (**112/911**) or search “suicide crisis hotline” + your country.",
|
| 49 |
}
|
| 50 |
|
| 51 |
-
#
|
| 52 |
SUGGESTIONS = {
|
| 53 |
"sadness": [
|
| 54 |
"Be gentle with yourself. Cry if you need to — that’s healing, not weakness.",
|
|
@@ -162,66 +162,53 @@ SUGGESTIONS = {
|
|
| 162 |
],
|
| 163 |
}
|
| 164 |
|
| 165 |
-
# --- Inspirational / comforting quotes & affirmations ---
|
| 166 |
QUOTES = {
|
| 167 |
"sadness": [
|
| 168 |
"“Even the darkest night will end and the sun will rise.” – Victor Hugo",
|
| 169 |
-
"“You don’t have to feel better to start healing.”",
|
| 170 |
-
"“It’s okay to be lost for a while.”",
|
| 171 |
-
"“Tears are words the heart can’t express.” – Paulo Coelho",
|
| 172 |
"“You have survived every hard day so far.”",
|
|
|
|
| 173 |
],
|
| 174 |
"fear": [
|
| 175 |
"“Feel the fear and do it anyway.” – Susan Jeffers",
|
| 176 |
-
"“Courage is not the absence of fear, but acting in spite of it.”",
|
| 177 |
-
"“You’ve faced hard things before — you can again.”",
|
| 178 |
"“This moment will not last forever.”",
|
|
|
|
| 179 |
],
|
| 180 |
"joy": [
|
| 181 |
"“Happiness is not out there, it’s in you.”",
|
| 182 |
"“Let joy be your rebellion.”",
|
| 183 |
"“Enjoy the little things — one day you’ll realize they were the big things.”",
|
| 184 |
-
"“Joy shared is joy doubled.”",
|
| 185 |
],
|
| 186 |
"anger": [
|
| 187 |
-
"“Speak when you are angry and you’ll make the best speech you’ll ever regret.” – Ambrose Bierce",
|
| 188 |
"“Peace begins with a pause.”",
|
| 189 |
-
"“Anger is energy —
|
| 190 |
],
|
| 191 |
"boredom": [
|
| 192 |
"“Boredom is the beginning of imagination.” – Jules Renard",
|
| 193 |
"“Curiosity is the cure for boredom.” – Dorothy Parker",
|
| 194 |
-
"“The small things done repeatedly change everything.”",
|
| 195 |
],
|
| 196 |
"grief": [
|
| 197 |
"“Grief is love that has nowhere to go.”",
|
| 198 |
-
"“What we once enjoyed we can never lose; all that we love deeply becomes part of us.” – Helen Keller",
|
| 199 |
"“Love doesn’t end, it changes form.”",
|
| 200 |
],
|
| 201 |
"love": [
|
| 202 |
"“Where there is love, there is life.” – Mahatma Gandhi",
|
| 203 |
"“You are loved just for being who you are.” – Ram Dass",
|
| 204 |
-
"“Love quietly transforms everything it touches.”",
|
| 205 |
],
|
| 206 |
"nervousness": [
|
| 207 |
-
"“You don’t have to control your thoughts; just stop letting them control you.” – Dan Millman",
|
| 208 |
"“Breathe. You are doing enough.”",
|
| 209 |
"“This worry does not define you.”",
|
| 210 |
],
|
| 211 |
"curiosity": [
|
| 212 |
"“Stay curious — it’s the mind’s way of loving life.”",
|
| 213 |
-
"“Wonder is wisdom’s beginning.” – Socrates",
|
| 214 |
"“Every question plants a seed.”",
|
| 215 |
],
|
| 216 |
"gratitude": [
|
| 217 |
"“Gratitude turns what we have into enough.”",
|
| 218 |
-
"“The more grateful I am, the more beauty I see.” – Mary Davis",
|
| 219 |
"“Thankfulness unlocks joy.”",
|
| 220 |
],
|
| 221 |
"neutral": [
|
| 222 |
"“Be present — even a calm moment can be a quiet victory.”",
|
| 223 |
"“Peace is not the absence of chaos, but the presence of inner calm.”",
|
| 224 |
-
"“Slow is smooth, smooth is peaceful.”",
|
| 225 |
],
|
| 226 |
}
|
| 227 |
|
|
@@ -233,216 +220,118 @@ COLOR_MAP = {
|
|
| 233 |
"neutral": "#F5F5F5",
|
| 234 |
}
|
| 235 |
|
| 236 |
-
# Map GoEmotions label -> your UI buckets
|
| 237 |
GOEMO_TO_APP = {
|
| 238 |
-
"admiration": "gratitude",
|
| 239 |
-
"
|
| 240 |
-
"
|
| 241 |
-
"
|
| 242 |
-
"
|
| 243 |
-
"
|
| 244 |
-
"
|
| 245 |
-
"
|
| 246 |
-
"desire": "joy",
|
| 247 |
-
"disappointment": "sadness",
|
| 248 |
-
"disapproval": "anger",
|
| 249 |
-
"disgust": "anger",
|
| 250 |
-
"embarrassment": "nervousness",
|
| 251 |
-
"excitement": "joy",
|
| 252 |
-
"fear": "fear",
|
| 253 |
-
"gratitude": "gratitude",
|
| 254 |
-
"grief": "grief",
|
| 255 |
-
"joy": "joy",
|
| 256 |
-
"love": "love",
|
| 257 |
-
"nervousness": "nervousness",
|
| 258 |
-
"optimism": "joy",
|
| 259 |
-
"pride": "joy",
|
| 260 |
-
"realization": "neutral",
|
| 261 |
-
"relief": "gratitude",
|
| 262 |
-
"remorse": "grief",
|
| 263 |
-
"sadness": "sadness",
|
| 264 |
-
"surprise": "neutral",
|
| 265 |
-
"neutral": "neutral",
|
| 266 |
}
|
| 267 |
|
| 268 |
-
THRESHOLD = 0.30
|
| 269 |
|
| 270 |
# ---------------- SQLite helpers ----------------
|
| 271 |
def get_conn():
|
| 272 |
return sqlite3.connect(DB_PATH, check_same_thread=False, timeout=10)
|
| 273 |
|
| 274 |
def init_db():
|
| 275 |
-
conn =
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
conn.commit()
|
| 289 |
-
finally:
|
| 290 |
-
try:
|
| 291 |
-
if conn: conn.close()
|
| 292 |
-
except Exception:
|
| 293 |
-
pass
|
| 294 |
|
| 295 |
def log_session(country, msg, emotion):
|
| 296 |
-
conn =
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
conn.commit()
|
| 305 |
-
finally:
|
| 306 |
-
try:
|
| 307 |
-
if conn: conn.close()
|
| 308 |
-
except Exception:
|
| 309 |
-
pass
|
| 310 |
-
|
| 311 |
-
# ---------------- Train / Load model from DATASET ONLY ----------------
|
| 312 |
def load_goemotions_dataset():
|
| 313 |
-
# "simplified" gives 'text' and 'labels' as list[int] indices
|
| 314 |
ds = load_dataset("google-research-datasets/go_emotions", "simplified")
|
| 315 |
label_names = ds["train"].features["labels"].feature.names
|
| 316 |
return ds, label_names
|
| 317 |
|
| 318 |
-
def _prepare_xy(split):
|
| 319 |
-
# Each example has text and labels (list of ints)
|
| 320 |
-
X = split["text"]
|
| 321 |
-
y = split["labels"] # list[list[int]]
|
| 322 |
-
return X, y
|
| 323 |
-
|
| 324 |
def train_or_load_model():
|
| 325 |
-
# Try cache first
|
| 326 |
if os.path.isfile(MODEL_PATH):
|
| 327 |
print("[MM] Loading cached classifier...")
|
| 328 |
bundle = joblib.load(MODEL_PATH)
|
| 329 |
if bundle.get("version") == MODEL_VERSION:
|
| 330 |
return bundle["pipeline"], bundle["mlb"], bundle["label_names"]
|
| 331 |
-
else:
|
| 332 |
-
print("[MM] Cached model version mismatch; retraining...")
|
| 333 |
|
| 334 |
print("[MM] Loading GoEmotions dataset...")
|
| 335 |
ds, label_names = load_goemotions_dataset()
|
| 336 |
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
X_val, y_val_idx = _prepare_xy(ds["validation"])
|
| 340 |
|
| 341 |
-
# MultiLabelBinarizer to convert list[int] -> multi-hot
|
| 342 |
mlb = MultiLabelBinarizer(classes=list(range(len(label_names))))
|
| 343 |
-
Y_train = mlb.fit_transform(
|
| 344 |
-
Y_val
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
("
|
| 349 |
-
lowercase=True,
|
| 350 |
-
ngram_range=(1,2),
|
| 351 |
-
min_df=2,
|
| 352 |
-
max_df=0.9,
|
| 353 |
-
strip_accents="unicode",
|
| 354 |
-
)),
|
| 355 |
-
("ovr", OneVsRestClassifier(
|
| 356 |
-
LogisticRegression(
|
| 357 |
-
solver="saga",
|
| 358 |
-
max_iter=1000,
|
| 359 |
-
n_jobs=-1,
|
| 360 |
-
class_weight="balanced",
|
| 361 |
-
),
|
| 362 |
-
n_jobs=-1
|
| 363 |
-
))
|
| 364 |
])
|
| 365 |
|
| 366 |
-
print("[MM] Training classifier
|
| 367 |
clf.fit(X_train, Y_train)
|
| 368 |
|
| 369 |
-
|
| 370 |
-
Y_val_pred = clf.predict(X_val)
|
| 371 |
-
macro_f1 = f1_score(Y_val, Y_val_pred, average="macro", zero_division=0)
|
| 372 |
-
print(f"[MM] Validation macro F1: {macro_f1:.3f}")
|
| 373 |
-
|
| 374 |
-
# Cache model
|
| 375 |
-
joblib.dump({
|
| 376 |
-
"version": MODEL_VERSION,
|
| 377 |
-
"pipeline": clf,
|
| 378 |
-
"mlb": mlb,
|
| 379 |
-
"label_names": label_names
|
| 380 |
-
}, MODEL_PATH)
|
| 381 |
-
print(f"[MM] Saved classifier to {MODEL_PATH}")
|
| 382 |
|
|
|
|
| 383 |
return clf, mlb, label_names
|
| 384 |
|
| 385 |
-
# Train/load at startup
|
| 386 |
try:
|
| 387 |
CLASSIFIER, MLB, LABEL_NAMES = train_or_load_model()
|
| 388 |
except Exception as e:
|
| 389 |
print(f"[WARN] Failed to train/load classifier: {e}")
|
| 390 |
CLASSIFIER, MLB, LABEL_NAMES = None, None, None
|
| 391 |
|
| 392 |
-
# ----------------
|
| 393 |
def classify_text(text: str):
|
| 394 |
-
|
| 395 |
-
Returns list of (label_name, prob) for labels above THRESHOLD, sorted desc.
|
| 396 |
-
"""
|
| 397 |
-
if not CLASSIFIER or not MLB or not LABEL_NAMES:
|
| 398 |
-
return []
|
| 399 |
-
|
| 400 |
-
# predict_proba returns array shape (1, n_labels)
|
| 401 |
try:
|
| 402 |
proba = CLASSIFIER.predict_proba([text])[0]
|
| 403 |
except AttributeError:
|
| 404 |
-
# If estimator doesn't support predict_proba (shouldn't happen with LR),
|
| 405 |
-
# fall back to decision_function -> sigmoid
|
| 406 |
from scipy.special import expit
|
| 407 |
-
|
| 408 |
-
proba = expit(scores)
|
| 409 |
-
|
| 410 |
idxs = [i for i, p in enumerate(proba) if p >= THRESHOLD]
|
| 411 |
-
# Sort by probability desc
|
| 412 |
idxs.sort(key=lambda i: proba[i], reverse=True)
|
| 413 |
return [(LABEL_NAMES[i], float(proba[i])) for i in idxs]
|
| 414 |
|
| 415 |
def detect_emotions(text: str):
|
| 416 |
chosen = classify_text(text)
|
| 417 |
-
if not chosen:
|
| 418 |
-
return "neutral"
|
| 419 |
-
# Map to app buckets and take the strongest
|
| 420 |
bucket = {}
|
| 421 |
for label, p in chosen:
|
| 422 |
app = GOEMO_TO_APP.get(label.lower(), "neutral")
|
| 423 |
bucket[app] = max(bucket.get(app, 0.0), p)
|
| 424 |
-
|
| 425 |
-
return main
|
| 426 |
|
| 427 |
-
# ----------------
|
| 428 |
def compose_support_legacy(main_emotion: str, is_first_msg: bool) -> str:
|
| 429 |
-
tip = random.choice(SUGGESTIONS.get(
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
| 436 |
-
))
|
| 437 |
-
|
| 438 |
-
# 0 = advice only, 1 = quote only, 2 = both
|
| 439 |
-
mode = random.choice([0, 1, 2])
|
| 440 |
-
if mode == 0:
|
| 441 |
-
reply = tip
|
| 442 |
-
elif mode == 1:
|
| 443 |
-
reply = f"✨ {quote}"
|
| 444 |
-
else:
|
| 445 |
-
reply = f"{tip}\n\n💬 {quote}"
|
| 446 |
|
| 447 |
if is_first_msg:
|
| 448 |
reply += "\n\n*Can you tell me a bit more about what’s behind that feeling?*"
|
|
@@ -452,88 +341,14 @@ def compose_support_legacy(main_emotion: str, is_first_msg: bool) -> str:
|
|
| 452 |
# ---------------- Chat logic ----------------
|
| 453 |
def crisis_block(country):
|
| 454 |
msg = CRISIS_NUMBERS.get(country, CRISIS_NUMBERS["Other / Not listed"])
|
| 455 |
-
return (
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
"Please reach out to someone now. You are not alone."
|
| 459 |
-
)
|
| 460 |
|
| 461 |
def chat_step(message, history, country, save_session):
|
| 462 |
if CRISIS_RE.search(message):
|
| 463 |
return crisis_block(country), "#FFD6E7"
|
| 464 |
-
|
| 465 |
if CLOSING_RE.search(message):
|
| 466 |
return ("Thank you 💛 Take care of yourself. Small steps matter. 🌿", "#FFFFFF")
|
| 467 |
|
| 468 |
-
|
| 469 |
-
main = detect_emotions(recent)
|
| 470 |
-
color = COLOR_MAP.get(main, "#FFFFFF")
|
| 471 |
-
|
| 472 |
-
if save_session:
|
| 473 |
-
log_session(country, message, main)
|
| 474 |
-
|
| 475 |
-
reply = compose_support_legacy(main, is_first_msg=not bool(history))
|
| 476 |
-
return reply, color
|
| 477 |
-
|
| 478 |
-
# ---------------- Gradio UI ----------------
|
| 479 |
-
init_db()
|
| 480 |
-
|
| 481 |
-
custom_css = """
|
| 482 |
-
:root, body, .gradio-container { transition: background-color 0.8s ease !important; }
|
| 483 |
-
.typing { font-style: italic; opacity: 0.8; animation: blink 1s infinite; }
|
| 484 |
-
@keyframes blink { 50% {opacity: 0.4;} }
|
| 485 |
-
"""
|
| 486 |
-
|
| 487 |
-
with gr.Blocks(css=custom_css, title="🪞 MoodMirror+ (Dataset-only Edition)") as demo:
|
| 488 |
-
style_injector = gr.HTML("")
|
| 489 |
-
gr.Markdown(
|
| 490 |
-
"### 🪞 MoodMirror+ — Emotional Support & Inspiration 🌸\n"
|
| 491 |
-
"Powered only by the **GoEmotions dataset** (trained locally on startup).\n\n"
|
| 492 |
-
"_Not medical advice. If you feel unsafe, please reach out for help immediately._"
|
| 493 |
-
)
|
| 494 |
-
|
| 495 |
-
with gr.Row():
|
| 496 |
-
country = gr.Dropdown(choices=list(CRISIS_NUMBERS.keys()), value="Other / Not listed", label="Country")
|
| 497 |
-
save_ok = gr.Checkbox(value=False, label="Save anonymized session (no personal data)")
|
| 498 |
-
|
| 499 |
-
chat = gr.Chatbot(height=360)
|
| 500 |
-
msg = gr.Textbox(placeholder="Type how you feel...", label="Your message")
|
| 501 |
-
send = gr.Button("Send")
|
| 502 |
-
typing = gr.Markdown("", elem_classes="typing")
|
| 503 |
-
|
| 504 |
-
# Optional: dataset preview (for transparency)
|
| 505 |
-
with gr.Accordion("🔎 Preview GoEmotions samples", open=False):
|
| 506 |
-
with gr.Row():
|
| 507 |
-
n_examples = gr.Slider(1, 10, value=5, step=1, label="Number of examples")
|
| 508 |
-
split = gr.Dropdown(["train", "validation", "test"], value="train", label="Split")
|
| 509 |
-
refresh = gr.Button("Show samples")
|
| 510 |
-
table = gr.Dataframe(headers=["text", "labels"], row_count=5, wrap=True)
|
| 511 |
-
|
| 512 |
-
def refresh_samples(n, split_name):
|
| 513 |
-
try:
|
| 514 |
-
ds = load_dataset("google-research-datasets/go_emotions", "simplified")
|
| 515 |
-
names = ds["train"].features["labels"].feature.names
|
| 516 |
-
rows = ds[split_name].shuffle(seed=42).select(range(min(int(n), len(ds[split_name]))))
|
| 517 |
-
return [[t, ", ".join([names[i] for i in labs])] for t, labs in zip(rows["text"], rows["labels"])]
|
| 518 |
-
except Exception as e:
|
| 519 |
-
return [[f"Dataset load error: {e}", ""]]
|
| 520 |
-
|
| 521 |
-
refresh.click(refresh_samples, inputs=[n_examples, split], outputs=[table])
|
| 522 |
-
|
| 523 |
-
def respond(user_msg, chat_hist, country_choice, save_flag):
|
| 524 |
-
if not user_msg or not user_msg.strip():
|
| 525 |
-
yield chat_hist + [[user_msg, "Please share a short sentence about how you feel 🙂"]], "", "", ""
|
| 526 |
-
return
|
| 527 |
-
yield chat_hist, "💭 MoodMirror is thinking...", "", ""
|
| 528 |
-
reply, color = chat_step(user_msg, chat_hist, country_choice, bool(save_flag))
|
| 529 |
-
style_tag = f"<style>:root,body,.gradio-container{{background:{color}!important;}}</style>"
|
| 530 |
-
yield chat_hist + [[user_msg, reply]], "", style_tag, ""
|
| 531 |
-
|
| 532 |
-
send.click(respond, inputs=[msg, chat, country, save_ok],
|
| 533 |
-
outputs=[chat, typing, style_injector, msg], queue=True)
|
| 534 |
-
msg.submit(respond, inputs=[msg, chat, country, save_ok],
|
| 535 |
-
outputs=[chat, typing, style_injector, msg], queue=True)
|
| 536 |
-
|
| 537 |
-
if __name__ == "__main__":
|
| 538 |
-
demo.queue()
|
| 539 |
-
demo.launch()
|
|
|
|
| 19 |
from sklearn.pipeline import Pipeline
|
| 20 |
from sklearn.metrics import f1_score
|
| 21 |
|
| 22 |
+
# ---------------- Storage paths ----------------
|
| 23 |
def _pick_data_dir():
|
| 24 |
if os.path.isdir("/data") and os.access("/data", os.W_OK):
|
| 25 |
return "/data"
|
|
|
|
| 28 |
DATA_DIR = os.getenv("MM_DATA_DIR", _pick_data_dir())
|
| 29 |
os.makedirs(DATA_DIR, exist_ok=True)
|
| 30 |
DB_PATH = os.path.join(DATA_DIR, "moodmirror.db")
|
| 31 |
+
MODEL_PATH = os.path.join(DATA_DIR, "goemo_sklearn.joblib")
|
| 32 |
+
MODEL_VERSION = "v1-tfidf-lr-ovr"
|
| 33 |
|
| 34 |
print(f"[MM] Using data dir: {DATA_DIR}")
|
| 35 |
print(f"[MM] SQLite path: {DB_PATH}")
|
|
|
|
| 48 |
"Other / Not listed": "Call your local emergency number (**112/911**) or search “suicide crisis hotline” + your country.",
|
| 49 |
}
|
| 50 |
|
| 51 |
+
# ---------------- Advice & Quotes ----------------
|
| 52 |
SUGGESTIONS = {
|
| 53 |
"sadness": [
|
| 54 |
"Be gentle with yourself. Cry if you need to — that’s healing, not weakness.",
|
|
|
|
| 162 |
],
|
| 163 |
}
|
| 164 |
|
|
|
|
| 165 |
QUOTES = {
|
| 166 |
"sadness": [
|
| 167 |
"“Even the darkest night will end and the sun will rise.” – Victor Hugo",
|
|
|
|
|
|
|
|
|
|
| 168 |
"“You have survived every hard day so far.”",
|
| 169 |
+
"“You don’t have to feel better to start healing.”",
|
| 170 |
],
|
| 171 |
"fear": [
|
| 172 |
"“Feel the fear and do it anyway.” – Susan Jeffers",
|
|
|
|
|
|
|
| 173 |
"“This moment will not last forever.”",
|
| 174 |
+
"“You’ve faced hard things before — you can again.”",
|
| 175 |
],
|
| 176 |
"joy": [
|
| 177 |
"“Happiness is not out there, it’s in you.”",
|
| 178 |
"“Let joy be your rebellion.”",
|
| 179 |
"“Enjoy the little things — one day you’ll realize they were the big things.”",
|
|
|
|
| 180 |
],
|
| 181 |
"anger": [
|
|
|
|
| 182 |
"“Peace begins with a pause.”",
|
| 183 |
+
"“Anger is energy — guide it, don’t suppress it.”",
|
| 184 |
],
|
| 185 |
"boredom": [
|
| 186 |
"“Boredom is the beginning of imagination.” – Jules Renard",
|
| 187 |
"“Curiosity is the cure for boredom.” – Dorothy Parker",
|
|
|
|
| 188 |
],
|
| 189 |
"grief": [
|
| 190 |
"“Grief is love that has nowhere to go.”",
|
|
|
|
| 191 |
"“Love doesn’t end, it changes form.”",
|
| 192 |
],
|
| 193 |
"love": [
|
| 194 |
"“Where there is love, there is life.” – Mahatma Gandhi",
|
| 195 |
"“You are loved just for being who you are.” – Ram Dass",
|
|
|
|
| 196 |
],
|
| 197 |
"nervousness": [
|
|
|
|
| 198 |
"“Breathe. You are doing enough.”",
|
| 199 |
"“This worry does not define you.”",
|
| 200 |
],
|
| 201 |
"curiosity": [
|
| 202 |
"“Stay curious — it’s the mind’s way of loving life.”",
|
|
|
|
| 203 |
"“Every question plants a seed.”",
|
| 204 |
],
|
| 205 |
"gratitude": [
|
| 206 |
"“Gratitude turns what we have into enough.”",
|
|
|
|
| 207 |
"“Thankfulness unlocks joy.”",
|
| 208 |
],
|
| 209 |
"neutral": [
|
| 210 |
"“Be present — even a calm moment can be a quiet victory.”",
|
| 211 |
"“Peace is not the absence of chaos, but the presence of inner calm.”",
|
|
|
|
| 212 |
],
|
| 213 |
}
|
| 214 |
|
|
|
|
| 220 |
"neutral": "#F5F5F5",
|
| 221 |
}
|
| 222 |
|
|
|
|
| 223 |
GOEMO_TO_APP = {
|
| 224 |
+
"admiration": "gratitude", "amusement": "joy", "anger": "anger", "annoyance": "anger",
|
| 225 |
+
"approval": "gratitude", "caring": "love", "confusion": "nervousness",
|
| 226 |
+
"curiosity": "curiosity", "desire": "joy", "disappointment": "sadness",
|
| 227 |
+
"disapproval": "anger", "disgust": "anger", "embarrassment": "nervousness",
|
| 228 |
+
"excitement": "joy", "fear": "fear", "gratitude": "gratitude", "grief": "grief",
|
| 229 |
+
"joy": "joy", "love": "love", "nervousness": "nervousness", "optimism": "joy",
|
| 230 |
+
"pride": "joy", "realization": "neutral", "relief": "gratitude", "remorse": "grief",
|
| 231 |
+
"sadness": "sadness", "surprise": "neutral", "neutral": "neutral",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
}
|
| 233 |
|
| 234 |
+
THRESHOLD = 0.30
|
| 235 |
|
| 236 |
# ---------------- SQLite helpers ----------------
|
| 237 |
def get_conn():
|
| 238 |
return sqlite3.connect(DB_PATH, check_same_thread=False, timeout=10)
|
| 239 |
|
| 240 |
def init_db():
|
| 241 |
+
conn = get_conn()
|
| 242 |
+
c = conn.cursor()
|
| 243 |
+
c.execute("""
|
| 244 |
+
CREATE TABLE IF NOT EXISTS sessions(
|
| 245 |
+
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 246 |
+
ts TEXT,
|
| 247 |
+
country TEXT,
|
| 248 |
+
user_text TEXT,
|
| 249 |
+
main_emotion TEXT
|
| 250 |
+
)
|
| 251 |
+
""")
|
| 252 |
+
conn.commit()
|
| 253 |
+
conn.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 254 |
|
| 255 |
def log_session(country, msg, emotion):
|
| 256 |
+
conn = get_conn()
|
| 257 |
+
c = conn.cursor()
|
| 258 |
+
c.execute("INSERT INTO sessions(ts, country, user_text, main_emotion) VALUES(?,?,?,?)",
|
| 259 |
+
(datetime.utcnow().isoformat(timespec="seconds"), country, msg[:500], emotion))
|
| 260 |
+
conn.commit()
|
| 261 |
+
conn.close()
|
| 262 |
+
|
| 263 |
+
# ---------------- Train / Load model ----------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
def load_goemotions_dataset():
|
|
|
|
| 265 |
ds = load_dataset("google-research-datasets/go_emotions", "simplified")
|
| 266 |
label_names = ds["train"].features["labels"].feature.names
|
| 267 |
return ds, label_names
|
| 268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
def train_or_load_model():
|
|
|
|
| 270 |
if os.path.isfile(MODEL_PATH):
|
| 271 |
print("[MM] Loading cached classifier...")
|
| 272 |
bundle = joblib.load(MODEL_PATH)
|
| 273 |
if bundle.get("version") == MODEL_VERSION:
|
| 274 |
return bundle["pipeline"], bundle["mlb"], bundle["label_names"]
|
|
|
|
|
|
|
| 275 |
|
| 276 |
print("[MM] Loading GoEmotions dataset...")
|
| 277 |
ds, label_names = load_goemotions_dataset()
|
| 278 |
|
| 279 |
+
X_train = ds["train"]["text"]; y_train = ds["train"]["labels"]
|
| 280 |
+
X_val = ds["validation"]["text"]; y_val = ds["validation"]["labels"]
|
|
|
|
| 281 |
|
|
|
|
| 282 |
mlb = MultiLabelBinarizer(classes=list(range(len(label_names))))
|
| 283 |
+
Y_train = mlb.fit_transform(y_train)
|
| 284 |
+
Y_val = mlb.transform(y_val)
|
| 285 |
+
|
| 286 |
+
clf = Pipeline([
|
| 287 |
+
("tfidf", TfidfVectorizer(lowercase=True, ngram_range=(1, 2), min_df=2, max_df=0.9, strip_accents="unicode")),
|
| 288 |
+
("ovr", OneVsRestClassifier(LogisticRegression(solver="saga", max_iter=1000, n_jobs=-1, class_weight="balanced"), n_jobs=-1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 289 |
])
|
| 290 |
|
| 291 |
+
print("[MM] Training classifier...")
|
| 292 |
clf.fit(X_train, Y_train)
|
| 293 |
|
| 294 |
+
print(f"[MM] Validation macro F1: {f1_score(Y_val, clf.predict(X_val), average='macro', zero_division=0):.3f}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
+
joblib.dump({"version": MODEL_VERSION, "pipeline": clf, "mlb": mlb, "label_names": label_names}, MODEL_PATH)
|
| 297 |
return clf, mlb, label_names
|
| 298 |
|
|
|
|
| 299 |
try:
|
| 300 |
CLASSIFIER, MLB, LABEL_NAMES = train_or_load_model()
|
| 301 |
except Exception as e:
|
| 302 |
print(f"[WARN] Failed to train/load classifier: {e}")
|
| 303 |
CLASSIFIER, MLB, LABEL_NAMES = None, None, None
|
| 304 |
|
| 305 |
+
# ---------------- Emotion detection ----------------
|
| 306 |
def classify_text(text: str):
|
| 307 |
+
if not CLASSIFIER: return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 308 |
try:
|
| 309 |
proba = CLASSIFIER.predict_proba([text])[0]
|
| 310 |
except AttributeError:
|
|
|
|
|
|
|
| 311 |
from scipy.special import expit
|
| 312 |
+
proba = expit(CLASSIFIER.decision_function([text])[0])
|
|
|
|
|
|
|
| 313 |
idxs = [i for i, p in enumerate(proba) if p >= THRESHOLD]
|
|
|
|
| 314 |
idxs.sort(key=lambda i: proba[i], reverse=True)
|
| 315 |
return [(LABEL_NAMES[i], float(proba[i])) for i in idxs]
|
| 316 |
|
| 317 |
def detect_emotions(text: str):
|
| 318 |
chosen = classify_text(text)
|
| 319 |
+
if not chosen: return "neutral"
|
|
|
|
|
|
|
| 320 |
bucket = {}
|
| 321 |
for label, p in chosen:
|
| 322 |
app = GOEMO_TO_APP.get(label.lower(), "neutral")
|
| 323 |
bucket[app] = max(bucket.get(app, 0.0), p)
|
| 324 |
+
return max(bucket, key=bucket.get)
|
|
|
|
| 325 |
|
| 326 |
+
# ---------------- Reply composer ----------------
|
| 327 |
def compose_support_legacy(main_emotion: str, is_first_msg: bool) -> str:
|
| 328 |
+
tip = random.choice(SUGGESTIONS.get(main_emotion, ["Take a slow breath. One small act of kindness can shift your day."]))
|
| 329 |
+
quote = random.choice(QUOTES.get(main_emotion, ["“No matter what you feel right now, this moment will pass.”"]))
|
| 330 |
+
include_quote = random.random() < 0.5
|
| 331 |
+
|
| 332 |
+
reply = tip
|
| 333 |
+
if include_quote:
|
| 334 |
+
reply += f"\n\n💬 {quote}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
if is_first_msg:
|
| 337 |
reply += "\n\n*Can you tell me a bit more about what’s behind that feeling?*"
|
|
|
|
| 341 |
# ---------------- Chat logic ----------------
|
| 342 |
def crisis_block(country):
|
| 343 |
msg = CRISIS_NUMBERS.get(country, CRISIS_NUMBERS["Other / Not listed"])
|
| 344 |
+
return ("💛 I'm really sorry you're feeling like this. You matter.\n\n"
|
| 345 |
+
f"**If you might be in danger or thinking about harming yourself:**\n{msg}\n\n"
|
| 346 |
+
"Please reach out to someone now. You are not alone.")
|
|
|
|
|
|
|
| 347 |
|
| 348 |
def chat_step(message, history, country, save_session):
|
| 349 |
if CRISIS_RE.search(message):
|
| 350 |
return crisis_block(country), "#FFD6E7"
|
|
|
|
| 351 |
if CLOSING_RE.search(message):
|
| 352 |
return ("Thank you 💛 Take care of yourself. Small steps matter. 🌿", "#FFFFFF")
|
| 353 |
|
| 354 |
+
emotion = detect_emotions(" ".join
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|