Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
# ================================
|
| 2 |
-
# 🪞 MoodMirror+ —
|
| 3 |
-
# - Tabs: Advice • Emergency numbers • Breathing • Journal (edit + PDF
|
| 4 |
-
# - Gradio + sklearn compatibility fixes
|
| 5 |
# ================================
|
| 6 |
import os
|
| 7 |
import re
|
|
@@ -21,7 +20,7 @@ from sklearn.linear_model import LogisticRegression
|
|
| 21 |
from sklearn.multiclass import OneVsRestClassifier
|
| 22 |
from sklearn.pipeline import Pipeline
|
| 23 |
|
| 24 |
-
#
|
| 25 |
try:
|
| 26 |
from reportlab.lib.pagesizes import A4
|
| 27 |
from reportlab.pdfgen import canvas
|
|
@@ -40,7 +39,7 @@ DATA_DIR = _pick_data_dir()
|
|
| 40 |
os.makedirs(DATA_DIR, exist_ok=True)
|
| 41 |
DB_PATH = os.path.join(DATA_DIR, "moodmirror.db")
|
| 42 |
MODEL_PATH = os.path.join(DATA_DIR, "goemo_sklearn.joblib")
|
| 43 |
-
MODEL_VERSION = "
|
| 44 |
|
| 45 |
# ---------------- Crisis & closing ----------------
|
| 46 |
CRISIS_RE = re.compile(
|
|
@@ -52,7 +51,7 @@ CLOSING_RE = re.compile(
|
|
| 52 |
re.I,
|
| 53 |
)
|
| 54 |
|
| 55 |
-
# English crisis numbers
|
| 56 |
CRISIS_NUMBERS_EN = {
|
| 57 |
"United States": "📞 **988** (Suicide & Crisis Lifeline, 24/7)",
|
| 58 |
"Canada": "📞 **988** (Suicide Crisis Helpline, 24/7)",
|
|
@@ -72,19 +71,85 @@ CRISIS_NUMBERS_EN = {
|
|
| 72 |
"Other / Not listed": "Call local emergency (**112/911**) or search “suicide hotline” + your country.",
|
| 73 |
}
|
| 74 |
|
| 75 |
-
# ---------------- Advice library (
|
| 76 |
SUGGESTIONS = {
|
| 77 |
-
"sadness": [
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
"
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
}
|
| 89 |
|
| 90 |
WHY_BY_EMOTION = {
|
|
@@ -109,15 +174,51 @@ COLOR_MAP = {
|
|
| 109 |
"neutral": "#F5F5F5", "curiosity": "#E6EE9C",
|
| 110 |
}
|
| 111 |
|
|
|
|
| 112 |
GOEMO_TO_APP = {
|
| 113 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 114 |
}
|
| 115 |
|
| 116 |
-
# ---------------- Preprocessing ----------------
|
| 117 |
-
THRESHOLD_BASE = 0.30
|
| 118 |
-
MIN_THRESHOLD = 0.10
|
| 119 |
CLEAN_RE = re.compile(r"(https?://\S+)|(@\w+)|(#\w+)|[^a-zA-Z0-9\s']")
|
| 120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
def clean_text(s: str) -> str:
|
| 122 |
s = s.lower()
|
| 123 |
s = CLEAN_RE.sub(" ", s)
|
|
@@ -125,7 +226,22 @@ def clean_text(s: str) -> str:
|
|
| 125 |
return s
|
| 126 |
|
| 127 |
def augment_text(text: str, history=None) -> str:
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
# ---------------- SQLite ----------------
|
| 131 |
def get_conn():
|
|
@@ -133,18 +249,13 @@ def get_conn():
|
|
| 133 |
|
| 134 |
def init_db():
|
| 135 |
conn = get_conn()
|
| 136 |
-
# sessions
|
| 137 |
conn.execute("""CREATE TABLE IF NOT EXISTS sessions(
|
| 138 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 139 |
ts TEXT, country TEXT, user_text TEXT, main_emotion TEXT
|
| 140 |
)""")
|
| 141 |
-
# journal
|
| 142 |
conn.execute("""CREATE TABLE IF NOT EXISTS journal(
|
| 143 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 144 |
-
ts TEXT NOT NULL,
|
| 145 |
-
emotion TEXT,
|
| 146 |
-
title TEXT,
|
| 147 |
-
content TEXT
|
| 148 |
)""")
|
| 149 |
conn.commit()
|
| 150 |
conn.close()
|
|
@@ -165,7 +276,7 @@ def journal_save(title: str, content: str, emotion: str):
|
|
| 165 |
ts = datetime.utcnow().isoformat(timespec='seconds')
|
| 166 |
conn = get_conn()
|
| 167 |
conn.execute("INSERT INTO journal(ts, emotion, title, content) VALUES (?,?,?,?)",
|
| 168 |
-
|
| 169 |
conn.commit()
|
| 170 |
conn.close()
|
| 171 |
return True, f"Saved ✓ ({ts} UTC)."
|
|
@@ -175,15 +286,10 @@ def journal_list(search: str = "", limit: int = 50):
|
|
| 175 |
params = []
|
| 176 |
if search:
|
| 177 |
q += " WHERE (LOWER(title) LIKE ? OR LOWER(content) LIKE ? OR LOWER(emotion) LIKE ?)"
|
| 178 |
-
s = f"%{search.lower()}%"
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
conn = get_conn()
|
| 183 |
-
rows = list(conn.execute(q, params))
|
| 184 |
-
conn.close()
|
| 185 |
-
options = []
|
| 186 |
-
table = []
|
| 187 |
for (id_, ts, emo, title, content) in rows:
|
| 188 |
label = f"{ts} — [{(emo or 'neutral')}] {title or (content[:30] + ('…' if len(content) > 30 else ''))}"
|
| 189 |
options.append((label, id_))
|
|
@@ -195,34 +301,28 @@ def journal_list(search: str = "", limit: int = 50):
|
|
| 195 |
def journal_get(entry_id: int):
|
| 196 |
conn = get_conn()
|
| 197 |
cur = conn.execute("SELECT ts, emotion, title, content FROM journal WHERE id = ?", (int(entry_id),))
|
| 198 |
-
row = cur.fetchone()
|
| 199 |
-
conn.close()
|
| 200 |
if not row: return None
|
| 201 |
ts, emo, title, content = row
|
| 202 |
return {"ts": ts, "emotion": emo or "", "title": title or "", "content": content or ""}
|
| 203 |
|
| 204 |
def journal_update(entry_id: int, title: str, content: str, emotion: str):
|
| 205 |
if entry_id is None: return False, "No entry selected."
|
| 206 |
-
title = (title or "").strip()
|
| 207 |
-
content
|
| 208 |
-
if not content:
|
| 209 |
-
return False, "Entry content cannot be empty."
|
| 210 |
conn = get_conn()
|
| 211 |
-
cur = conn.execute("UPDATE journal SET title=?, content=?, emotion=? WHERE id=?",
|
| 212 |
-
|
| 213 |
-
ok = (cur.rowcount or 0) > 0
|
| 214 |
-
conn.close()
|
| 215 |
return ok, ("Updated ✓" if ok else "Entry not found.")
|
| 216 |
|
| 217 |
def journal_delete(entry_id: int):
|
| 218 |
conn = get_conn()
|
| 219 |
cur = conn.execute("DELETE FROM journal WHERE id = ?", (int(entry_id),))
|
| 220 |
-
conn.commit()
|
| 221 |
-
changes = conn.total_changes
|
| 222 |
-
conn.close()
|
| 223 |
return changes > 0
|
| 224 |
|
| 225 |
-
#
|
| 226 |
def _wrap_text(text, max_chars=90):
|
| 227 |
lines = []
|
| 228 |
for para in (text or "").split("\n"):
|
|
@@ -230,42 +330,32 @@ def _wrap_text(text, max_chars=90):
|
|
| 230 |
while len(para) > max_chars:
|
| 231 |
cut = para.rfind(" ", 0, max_chars)
|
| 232 |
if cut == -1: cut = max_chars
|
| 233 |
-
lines.append(para[:cut])
|
| 234 |
-
para = para[cut:].lstrip()
|
| 235 |
lines.append(para)
|
| 236 |
return lines
|
| 237 |
|
| 238 |
def _pdf_from_entry(path, data):
|
| 239 |
-
# Minimal PDF render with reportlab
|
| 240 |
c = canvas.Canvas(path, pagesize=A4)
|
| 241 |
width, height = A4
|
| 242 |
-
x_margin = 20*mm
|
| 243 |
-
y_margin = 20*mm
|
| 244 |
-
y = height - y_margin
|
| 245 |
def draw_line(s, size=11, bold=False, leading=14):
|
| 246 |
nonlocal y
|
| 247 |
if y < 30*mm:
|
| 248 |
-
c.showPage()
|
| 249 |
-
y = height - y_margin
|
| 250 |
c.setFont("Helvetica-Bold" if bold else "Helvetica", size)
|
| 251 |
-
c.drawString(x_margin, y, s)
|
| 252 |
-
y -= leading
|
| 253 |
-
# Header
|
| 254 |
title = data["title"] or "(Untitled)"
|
| 255 |
draw_line(f"Title: {title}", size=14, bold=True, leading=18)
|
| 256 |
draw_line(f"Emotion: {data['emotion'] or '-'}")
|
| 257 |
draw_line(f"Saved (UTC): {data['ts']}")
|
| 258 |
draw_line("-"*80)
|
| 259 |
-
# Body
|
| 260 |
for ln in _wrap_text(data["content"], 95):
|
| 261 |
draw_line(ln)
|
| 262 |
-
c.showPage()
|
| 263 |
-
c.save()
|
| 264 |
|
| 265 |
def journal_export_txt(entry_id: int):
|
| 266 |
data = journal_get(entry_id)
|
| 267 |
-
if not data:
|
| 268 |
-
return None, "Entry not found."
|
| 269 |
fname = f"journal_{entry_id}_{data['ts'].replace(':','-')}.txt"
|
| 270 |
fpath = os.path.join(DATA_DIR, fname)
|
| 271 |
lines = [
|
|
@@ -275,16 +365,14 @@ def journal_export_txt(entry_id: int):
|
|
| 275 |
"-" * 40,
|
| 276 |
data["content"] or ""
|
| 277 |
]
|
| 278 |
-
with open(fpath, "w", encoding="utf-8") as f:
|
| 279 |
-
f.write("\n".join(lines))
|
| 280 |
return fpath, f"Ready: {fname}"
|
| 281 |
|
| 282 |
def journal_export_pdf(entry_id: int):
|
| 283 |
if not REPORTLAB_OK:
|
| 284 |
return None, "PDF export requires 'reportlab' (pip install reportlab)."
|
| 285 |
data = journal_get(entry_id)
|
| 286 |
-
if not data:
|
| 287 |
-
return None, "Entry not found."
|
| 288 |
safe_title = re.sub(r"[^a-zA-Z0-9_\- ]", "_", data["title"] or "untitled")
|
| 289 |
fname = f"journal_{entry_id}_{data['ts'][:19].replace(':','-')} - {safe_title}.pdf"
|
| 290 |
fpath = os.path.join(DATA_DIR, fname)
|
|
@@ -292,27 +380,20 @@ def journal_export_pdf(entry_id: int):
|
|
| 292 |
return fpath, f"PDF ready: {fname}"
|
| 293 |
|
| 294 |
def journal_export_all_zip(pdf_first=True):
|
| 295 |
-
conn = get_conn()
|
| 296 |
-
|
| 297 |
-
conn.close()
|
| 298 |
-
if not rows:
|
| 299 |
-
return None, "No entries to export."
|
| 300 |
-
# Try PDFs if requested & available, else fall back to txt
|
| 301 |
use_pdf = pdf_first and REPORTLAB_OK
|
| 302 |
zip_name = os.path.join(DATA_DIR, "journal_all.zip")
|
| 303 |
with zipfile.ZipFile(zip_name, "w", zipfile.ZIP_DEFLATED) as zf:
|
| 304 |
for (entry_id,) in rows:
|
| 305 |
data = journal_get(entry_id)
|
| 306 |
-
if not data:
|
| 307 |
-
continue
|
| 308 |
safe_title = re.sub(r"[^a-zA-Z0-9_\- ]", "_", data["title"] or "untitled")
|
| 309 |
stamp = data["ts"][:19].replace(":", "-")
|
| 310 |
if use_pdf:
|
| 311 |
-
# write to a temp pdf then add
|
| 312 |
tmp_pdf = os.path.join(DATA_DIR, f"_tmp_{entry_id}.pdf")
|
| 313 |
_pdf_from_entry(tmp_pdf, data)
|
| 314 |
-
arcname
|
| 315 |
-
zf.write(tmp_pdf, arcname=arcname)
|
| 316 |
try: os.remove(tmp_pdf)
|
| 317 |
except: pass
|
| 318 |
else:
|
|
@@ -323,12 +404,11 @@ def journal_export_all_zip(pdf_first=True):
|
|
| 323 |
f"{'-'*40}\n"
|
| 324 |
f"{data['content'] or ''}"
|
| 325 |
)
|
| 326 |
-
|
| 327 |
-
zf.writestr(arcname, txt)
|
| 328 |
msg = "Exported all as PDF." if use_pdf else "Exported all as TXT (install 'reportlab' for PDF)."
|
| 329 |
return zip_name, msg
|
| 330 |
|
| 331 |
-
# ----------------
|
| 332 |
def load_goemotions_dataset():
|
| 333 |
ds = load_dataset("google-research-datasets/go_emotions", "simplified")
|
| 334 |
return ds, ds["train"].features["labels"].feature.names
|
|
@@ -346,7 +426,12 @@ def train_or_load_model():
|
|
| 346 |
("tfidf", TfidfVectorizer(lowercase=True, ngram_range=(1,2), min_df=2, max_df=0.9, strip_accents="unicode")),
|
| 347 |
("ovr", OneVsRestClassifier(
|
| 348 |
LogisticRegression(
|
| 349 |
-
solver="saga",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 350 |
),
|
| 351 |
n_jobs=-1
|
| 352 |
))
|
|
@@ -365,22 +450,21 @@ def classify_text(text_augmented: str):
|
|
| 365 |
if not CLASSIFIER: return []
|
| 366 |
proba = CLASSIFIER.predict_proba([text_augmented])[0]
|
| 367 |
max_p = float(np.max(proba)) if len(proba) else 0.0
|
| 368 |
-
thr = max(
|
| 369 |
idxs = [i for i, p in enumerate(proba) if p >= thr] or [int(np.argmax(proba))]
|
| 370 |
idxs.sort(key=lambda i: proba[i], reverse=True)
|
| 371 |
return [(LABEL_NAMES[i], float(proba[i])) for i in idxs]
|
| 372 |
|
| 373 |
def detect_emotion_text(message: str, history):
|
| 374 |
labels = classify_text(augment_text(message, history))
|
| 375 |
-
if not labels:
|
| 376 |
-
return "neutral"
|
| 377 |
bucket = {}
|
| 378 |
for lbl, p in labels:
|
| 379 |
app = GOEMO_TO_APP.get(lbl.lower(), "neutral")
|
| 380 |
bucket[app] = max(bucket.get(app, 0.0), p)
|
| 381 |
return max(bucket, key=bucket.get) if bucket else "neutral"
|
| 382 |
|
| 383 |
-
# ---------------- Advice
|
| 384 |
def pick_advice_from_pool(emotion: str, pool: dict, last_tip: str = ""):
|
| 385 |
tips_all = SUGGESTIONS.get(emotion, SUGGESTIONS["neutral"])
|
| 386 |
entry = pool.get(emotion, {"unused": [], "last": ""})
|
|
@@ -554,7 +638,6 @@ with gr.Blocks(title="🪞 MoodMirror+ — Text Emotion • Advice-only") as dem
|
|
| 554 |
return msg, drop, table
|
| 555 |
|
| 556 |
def _load_entry_fill(entry_id):
|
| 557 |
-
"""Load selected entry into editor + preview."""
|
| 558 |
if entry_id is None:
|
| 559 |
return "", "neutral", "", ""
|
| 560 |
data = journal_get(entry_id)
|
|
@@ -606,7 +689,6 @@ with gr.Blocks(title="🪞 MoodMirror+ — Text Emotion • Advice-only") as dem
|
|
| 606 |
j_refresh.click(_refresh_entries, inputs=[j_search], outputs=[j_entries, j_table])
|
| 607 |
j_search.submit(_refresh_entries, inputs=[j_search], outputs=[j_entries, j_table])
|
| 608 |
|
| 609 |
-
# Selecting an entry both fills the editor and shows preview
|
| 610 |
j_entries.change(_load_entry_fill, inputs=[j_entries],
|
| 611 |
outputs=[j_title, j_emotion, j_text, j_view])
|
| 612 |
|
|
|
|
| 1 |
# ================================
|
| 2 |
+
# 🪞 MoodMirror+ — Emotion-aware Advice • Breathing • Journal
|
| 3 |
+
# - Tabs: Advice • Emergency numbers • Breathing • Journal (edit + PDF + export all)
|
|
|
|
| 4 |
# ================================
|
| 5 |
import os
|
| 6 |
import re
|
|
|
|
| 20 |
from sklearn.multiclass import OneVsRestClassifier
|
| 21 |
from sklearn.pipeline import Pipeline
|
| 22 |
|
| 23 |
+
# ---- Optional PDF deps ----
|
| 24 |
try:
|
| 25 |
from reportlab.lib.pagesizes import A4
|
| 26 |
from reportlab.pdfgen import canvas
|
|
|
|
| 39 |
os.makedirs(DATA_DIR, exist_ok=True)
|
| 40 |
DB_PATH = os.path.join(DATA_DIR, "moodmirror.db")
|
| 41 |
MODEL_PATH = os.path.join(DATA_DIR, "goemo_sklearn.joblib")
|
| 42 |
+
MODEL_VERSION = "v13-all-maps-hints"
|
| 43 |
|
| 44 |
# ---------------- Crisis & closing ----------------
|
| 45 |
CRISIS_RE = re.compile(
|
|
|
|
| 51 |
re.I,
|
| 52 |
)
|
| 53 |
|
| 54 |
+
# English crisis numbers
|
| 55 |
CRISIS_NUMBERS_EN = {
|
| 56 |
"United States": "📞 **988** (Suicide & Crisis Lifeline, 24/7)",
|
| 57 |
"Canada": "📞 **988** (Suicide Crisis Helpline, 24/7)",
|
|
|
|
| 71 |
"Other / Not listed": "Call local emergency (**112/911**) or search “suicide hotline” + your country.",
|
| 72 |
}
|
| 73 |
|
| 74 |
+
# ---------------- Advice library (5 tips each) ----------------
|
| 75 |
SUGGESTIONS = {
|
| 76 |
+
"sadness": [
|
| 77 |
+
"Go for a 5-minute outside walk and name three colors you see.",
|
| 78 |
+
"Write what hurts, then add one thing you still care about.",
|
| 79 |
+
"Take a warm shower and focus on your shoulders relaxing.",
|
| 80 |
+
"Text a safe person: “Can I vent for 2 minutes?”",
|
| 81 |
+
"Wrap in a blanket and slow your exhale for 60 seconds.",
|
| 82 |
+
],
|
| 83 |
+
"fear": [
|
| 84 |
+
"Do 5-4-3-2-1 grounding: 5 see, 4 feel, 3 hear, 2 smell, 1 taste.",
|
| 85 |
+
"Make your exhale longer than your inhale for eight breaths.",
|
| 86 |
+
"Hold something cool (spoon/ice) for 30 seconds and notice the sensation.",
|
| 87 |
+
"Name the fear in one clear sentence out loud.",
|
| 88 |
+
"Write the worst case, then the most likely case beside it.",
|
| 89 |
+
],
|
| 90 |
+
"anger": [
|
| 91 |
+
"Take space before replying; set a 10-minute timer.",
|
| 92 |
+
"Do ten slow exhales through pursed lips.",
|
| 93 |
+
"Squeeze then release your fists ten times.",
|
| 94 |
+
"Walk fast for five minutes or do one stair flight.",
|
| 95 |
+
"Write the crossed boundary; draft one calm sentence.",
|
| 96 |
+
],
|
| 97 |
+
"nervousness": [
|
| 98 |
+
"4-7-8 breathing: in 4s, hold 7s, out 8s (four rounds).",
|
| 99 |
+
"Relax your jaw and lower your shoulders.",
|
| 100 |
+
"Write worries down; underline what you can control.",
|
| 101 |
+
"Pick one tiny task you can finish in five minutes.",
|
| 102 |
+
"Hold a warm mug and notice the heat and weight.",
|
| 103 |
+
],
|
| 104 |
+
"boredom": [
|
| 105 |
+
"Set a 2-minute timer and start anything small.",
|
| 106 |
+
"Change your soundtrack—put on one new song.",
|
| 107 |
+
"Do 15 jumping jacks or a quick stretch.",
|
| 108 |
+
"Clean your phone screen or keyboard.",
|
| 109 |
+
"Write five quick ideas without editing.",
|
| 110 |
+
],
|
| 111 |
+
"grief": [
|
| 112 |
+
"Hold a photo or object and say their name softly.",
|
| 113 |
+
"Drink water and eat something—your body grieves too.",
|
| 114 |
+
"Write a short letter to them about today.",
|
| 115 |
+
"Create a tiny ritual (song, candle, place).",
|
| 116 |
+
"Plan one kind thing for yourself this week.",
|
| 117 |
+
],
|
| 118 |
+
"love": [
|
| 119 |
+
"Send a kind message without expecting a reply.",
|
| 120 |
+
"Note three things you appreciate about someone close.",
|
| 121 |
+
"Offer yourself one gentle act you needed today.",
|
| 122 |
+
"Give a sincere compliment to a stranger.",
|
| 123 |
+
"Plan a tiny gesture for tomorrow.",
|
| 124 |
+
],
|
| 125 |
+
"joy": [
|
| 126 |
+
"Pause and take three slow breaths to savor this.",
|
| 127 |
+
"Capture it—photo, note, or voice memo.",
|
| 128 |
+
"Tell someone why you feel good right now.",
|
| 129 |
+
"Move to music for one song.",
|
| 130 |
+
"Plan a tiny celebration later today.",
|
| 131 |
+
],
|
| 132 |
+
"curiosity": [
|
| 133 |
+
"Search one concept and read just the first paragraph.",
|
| 134 |
+
"Write three quick “what if…?” ideas.",
|
| 135 |
+
"Watch a “how does X work?” video for 3 minutes.",
|
| 136 |
+
"Learn one new word and use it once.",
|
| 137 |
+
"Sketch a simple diagram of an idea.",
|
| 138 |
+
],
|
| 139 |
+
"gratitude": [
|
| 140 |
+
"List three tiny things that made today easier.",
|
| 141 |
+
"Thank someone by name for something specific.",
|
| 142 |
+
"Notice an everyday object and appreciate its help.",
|
| 143 |
+
"Write “I’m lucky that…” and complete it once.",
|
| 144 |
+
"Savor your next sip or bite with attention.",
|
| 145 |
+
],
|
| 146 |
+
"neutral": [
|
| 147 |
+
"Take one slow breath and relax your hands.",
|
| 148 |
+
"Stand, stretch, and roll your shoulders.",
|
| 149 |
+
"Drink a glass of water mindfully.",
|
| 150 |
+
"Organize three items in your space.",
|
| 151 |
+
"Set a 10-minute timer to focus on one thing.",
|
| 152 |
+
],
|
| 153 |
}
|
| 154 |
|
| 155 |
WHY_BY_EMOTION = {
|
|
|
|
| 174 |
"neutral": "#F5F5F5", "curiosity": "#E6EE9C",
|
| 175 |
}
|
| 176 |
|
| 177 |
+
# Map all 28 GoEmotions -> UI buckets (fixes "always neutral")
|
| 178 |
GOEMO_TO_APP = {
|
| 179 |
+
"admiration": "gratitude",
|
| 180 |
+
"amusement": "joy",
|
| 181 |
+
"anger": "anger",
|
| 182 |
+
"annoyance": "anger",
|
| 183 |
+
"approval": "gratitude",
|
| 184 |
+
"caring": "love",
|
| 185 |
+
"confusion": "nervousness",
|
| 186 |
+
"curiosity": "curiosity",
|
| 187 |
+
"desire": "joy",
|
| 188 |
+
"disappointment": "sadness",
|
| 189 |
+
"disapproval": "anger",
|
| 190 |
+
"disgust": "anger",
|
| 191 |
+
"embarrassment": "nervousness",
|
| 192 |
+
"excitement": "joy",
|
| 193 |
+
"fear": "fear",
|
| 194 |
+
"gratitude": "gratitude",
|
| 195 |
+
"grief": "grief",
|
| 196 |
+
"joy": "joy",
|
| 197 |
+
"love": "love",
|
| 198 |
+
"nervousness": "nervousness",
|
| 199 |
+
"optimism": "joy",
|
| 200 |
+
"pride": "joy",
|
| 201 |
+
"realization": "neutral",
|
| 202 |
+
"relief": "gratitude",
|
| 203 |
+
"remorse": "grief",
|
| 204 |
+
"sadness": "sadness",
|
| 205 |
+
"surprise": "neutral",
|
| 206 |
+
"neutral": "neutral",
|
| 207 |
}
|
| 208 |
|
| 209 |
+
# ---------------- Preprocessing & Hints ----------------
|
|
|
|
|
|
|
| 210 |
CLEAN_RE = re.compile(r"(https?://\S+)|(@\w+)|(#\w+)|[^a-zA-Z0-9\s']")
|
| 211 |
|
| 212 |
+
EMOJI_HINTS = {"😭": "sadness", "😡": "anger", "🥰": "love", "😨": "fear", "😴": "boredom"}
|
| 213 |
+
HINTS_EN = {
|
| 214 |
+
"i'm nervous": "nervousness", "im nervous": "nervousness", "nervous": "nervousness",
|
| 215 |
+
"anxious": "nervousness", "anxiety": "nervousness", "panic": "nervousness",
|
| 216 |
+
"i'm grieving": "grief", "im grieving": "grief", "grieving": "grief", "grief": "grief",
|
| 217 |
+
"sad": "sadness", "depressed": "sadness",
|
| 218 |
+
"angry": "anger", "furious": "anger",
|
| 219 |
+
"afraid": "fear", "scared": "fear",
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
def clean_text(s: str) -> str:
|
| 223 |
s = s.lower()
|
| 224 |
s = CLEAN_RE.sub(" ", s)
|
|
|
|
| 226 |
return s
|
| 227 |
|
| 228 |
def augment_text(text: str, history=None) -> str:
|
| 229 |
+
t = clean_text(text or "")
|
| 230 |
+
lt = (text or "").lower()
|
| 231 |
+
tags = []
|
| 232 |
+
for k, v in EMOJI_HINTS.items():
|
| 233 |
+
if k in lt:
|
| 234 |
+
tags.append(v)
|
| 235 |
+
for k, v in HINTS_EN.items():
|
| 236 |
+
if k in lt:
|
| 237 |
+
tags.append(v)
|
| 238 |
+
if history and len(t.split()) < 8:
|
| 239 |
+
prev_user = history[-1][0] if history and history[-1] else ""
|
| 240 |
+
if isinstance(prev_user, str) and prev_user:
|
| 241 |
+
t += " " + clean_text(prev_user)
|
| 242 |
+
if tags:
|
| 243 |
+
t += " " + " ".join(f"emo_{x}" for x in tags)
|
| 244 |
+
return t
|
| 245 |
|
| 246 |
# ---------------- SQLite ----------------
|
| 247 |
def get_conn():
|
|
|
|
| 249 |
|
| 250 |
def init_db():
|
| 251 |
conn = get_conn()
|
|
|
|
| 252 |
conn.execute("""CREATE TABLE IF NOT EXISTS sessions(
|
| 253 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 254 |
ts TEXT, country TEXT, user_text TEXT, main_emotion TEXT
|
| 255 |
)""")
|
|
|
|
| 256 |
conn.execute("""CREATE TABLE IF NOT EXISTS journal(
|
| 257 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 258 |
+
ts TEXT NOT NULL, emotion TEXT, title TEXT, content TEXT
|
|
|
|
|
|
|
|
|
|
| 259 |
)""")
|
| 260 |
conn.commit()
|
| 261 |
conn.close()
|
|
|
|
| 276 |
ts = datetime.utcnow().isoformat(timespec='seconds')
|
| 277 |
conn = get_conn()
|
| 278 |
conn.execute("INSERT INTO journal(ts, emotion, title, content) VALUES (?,?,?,?)",
|
| 279 |
+
(ts, emotion or "", title, content))
|
| 280 |
conn.commit()
|
| 281 |
conn.close()
|
| 282 |
return True, f"Saved ✓ ({ts} UTC)."
|
|
|
|
| 286 |
params = []
|
| 287 |
if search:
|
| 288 |
q += " WHERE (LOWER(title) LIKE ? OR LOWER(content) LIKE ? OR LOWER(emotion) LIKE ?)"
|
| 289 |
+
s = f"%{search.lower()}%"; params = [s, s, s]
|
| 290 |
+
q += " ORDER BY ts DESC LIMIT ?"; params.append(int(limit))
|
| 291 |
+
conn = get_conn(); rows = list(conn.execute(q, params)); conn.close()
|
| 292 |
+
options, table = [], []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 293 |
for (id_, ts, emo, title, content) in rows:
|
| 294 |
label = f"{ts} — [{(emo or 'neutral')}] {title or (content[:30] + ('…' if len(content) > 30 else ''))}"
|
| 295 |
options.append((label, id_))
|
|
|
|
| 301 |
def journal_get(entry_id: int):
|
| 302 |
conn = get_conn()
|
| 303 |
cur = conn.execute("SELECT ts, emotion, title, content FROM journal WHERE id = ?", (int(entry_id),))
|
| 304 |
+
row = cur.fetchone(); conn.close()
|
|
|
|
| 305 |
if not row: return None
|
| 306 |
ts, emo, title, content = row
|
| 307 |
return {"ts": ts, "emotion": emo or "", "title": title or "", "content": content or ""}
|
| 308 |
|
| 309 |
def journal_update(entry_id: int, title: str, content: str, emotion: str):
|
| 310 |
if entry_id is None: return False, "No entry selected."
|
| 311 |
+
title = (title or "").strip(); content = (content or "").strip()
|
| 312 |
+
if not content: return False, "Entry content cannot be empty."
|
|
|
|
|
|
|
| 313 |
conn = get_conn()
|
| 314 |
+
cur = conn.execute("UPDATE journal SET title=?, content=?, emotion=? WHERE id=?",
|
| 315 |
+
(title, content, emotion or "", int(entry_id)))
|
| 316 |
+
conn.commit(); ok = (cur.rowcount or 0) > 0; conn.close()
|
|
|
|
| 317 |
return ok, ("Updated ✓" if ok else "Entry not found.")
|
| 318 |
|
| 319 |
def journal_delete(entry_id: int):
|
| 320 |
conn = get_conn()
|
| 321 |
cur = conn.execute("DELETE FROM journal WHERE id = ?", (int(entry_id),))
|
| 322 |
+
conn.commit(); changes = conn.total_changes; conn.close()
|
|
|
|
|
|
|
| 323 |
return changes > 0
|
| 324 |
|
| 325 |
+
# ---- PDF helpers ----
|
| 326 |
def _wrap_text(text, max_chars=90):
|
| 327 |
lines = []
|
| 328 |
for para in (text or "").split("\n"):
|
|
|
|
| 330 |
while len(para) > max_chars:
|
| 331 |
cut = para.rfind(" ", 0, max_chars)
|
| 332 |
if cut == -1: cut = max_chars
|
| 333 |
+
lines.append(para[:cut]); para = para[cut:].lstrip()
|
|
|
|
| 334 |
lines.append(para)
|
| 335 |
return lines
|
| 336 |
|
| 337 |
def _pdf_from_entry(path, data):
|
|
|
|
| 338 |
c = canvas.Canvas(path, pagesize=A4)
|
| 339 |
width, height = A4
|
| 340 |
+
x_margin = 20*mm; y_margin = 20*mm; y = height - y_margin
|
|
|
|
|
|
|
| 341 |
def draw_line(s, size=11, bold=False, leading=14):
|
| 342 |
nonlocal y
|
| 343 |
if y < 30*mm:
|
| 344 |
+
c.showPage(); y = height - y_margin
|
|
|
|
| 345 |
c.setFont("Helvetica-Bold" if bold else "Helvetica", size)
|
| 346 |
+
c.drawString(x_margin, y, s); y -= leading
|
|
|
|
|
|
|
| 347 |
title = data["title"] or "(Untitled)"
|
| 348 |
draw_line(f"Title: {title}", size=14, bold=True, leading=18)
|
| 349 |
draw_line(f"Emotion: {data['emotion'] or '-'}")
|
| 350 |
draw_line(f"Saved (UTC): {data['ts']}")
|
| 351 |
draw_line("-"*80)
|
|
|
|
| 352 |
for ln in _wrap_text(data["content"], 95):
|
| 353 |
draw_line(ln)
|
| 354 |
+
c.showPage(); c.save()
|
|
|
|
| 355 |
|
| 356 |
def journal_export_txt(entry_id: int):
|
| 357 |
data = journal_get(entry_id)
|
| 358 |
+
if not data: return None, "Entry not found."
|
|
|
|
| 359 |
fname = f"journal_{entry_id}_{data['ts'].replace(':','-')}.txt"
|
| 360 |
fpath = os.path.join(DATA_DIR, fname)
|
| 361 |
lines = [
|
|
|
|
| 365 |
"-" * 40,
|
| 366 |
data["content"] or ""
|
| 367 |
]
|
| 368 |
+
with open(fpath, "w", encoding="utf-8") as f: f.write("\n".join(lines))
|
|
|
|
| 369 |
return fpath, f"Ready: {fname}"
|
| 370 |
|
| 371 |
def journal_export_pdf(entry_id: int):
|
| 372 |
if not REPORTLAB_OK:
|
| 373 |
return None, "PDF export requires 'reportlab' (pip install reportlab)."
|
| 374 |
data = journal_get(entry_id)
|
| 375 |
+
if not data: return None, "Entry not found."
|
|
|
|
| 376 |
safe_title = re.sub(r"[^a-zA-Z0-9_\- ]", "_", data["title"] or "untitled")
|
| 377 |
fname = f"journal_{entry_id}_{data['ts'][:19].replace(':','-')} - {safe_title}.pdf"
|
| 378 |
fpath = os.path.join(DATA_DIR, fname)
|
|
|
|
| 380 |
return fpath, f"PDF ready: {fname}"
|
| 381 |
|
| 382 |
def journal_export_all_zip(pdf_first=True):
|
| 383 |
+
conn = get_conn(); rows = list(conn.execute("SELECT id FROM journal ORDER BY ts")); conn.close()
|
| 384 |
+
if not rows: return None, "No entries to export."
|
|
|
|
|
|
|
|
|
|
|
|
|
| 385 |
use_pdf = pdf_first and REPORTLAB_OK
|
| 386 |
zip_name = os.path.join(DATA_DIR, "journal_all.zip")
|
| 387 |
with zipfile.ZipFile(zip_name, "w", zipfile.ZIP_DEFLATED) as zf:
|
| 388 |
for (entry_id,) in rows:
|
| 389 |
data = journal_get(entry_id)
|
| 390 |
+
if not data: continue
|
|
|
|
| 391 |
safe_title = re.sub(r"[^a-zA-Z0-9_\- ]", "_", data["title"] or "untitled")
|
| 392 |
stamp = data["ts"][:19].replace(":", "-")
|
| 393 |
if use_pdf:
|
|
|
|
| 394 |
tmp_pdf = os.path.join(DATA_DIR, f"_tmp_{entry_id}.pdf")
|
| 395 |
_pdf_from_entry(tmp_pdf, data)
|
| 396 |
+
zf.write(tmp_pdf, arcname=f"{stamp} - {safe_title}.pdf")
|
|
|
|
| 397 |
try: os.remove(tmp_pdf)
|
| 398 |
except: pass
|
| 399 |
else:
|
|
|
|
| 404 |
f"{'-'*40}\n"
|
| 405 |
f"{data['content'] or ''}"
|
| 406 |
)
|
| 407 |
+
zf.writestr(f"{stamp} - {safe_title}.txt", txt)
|
|
|
|
| 408 |
msg = "Exported all as PDF." if use_pdf else "Exported all as TXT (install 'reportlab' for PDF)."
|
| 409 |
return zip_name, msg
|
| 410 |
|
| 411 |
+
# ---------------- Text model ----------------
|
| 412 |
def load_goemotions_dataset():
|
| 413 |
ds = load_dataset("google-research-datasets/go_emotions", "simplified")
|
| 414 |
return ds, ds["train"].features["labels"].feature.names
|
|
|
|
| 426 |
("tfidf", TfidfVectorizer(lowercase=True, ngram_range=(1,2), min_df=2, max_df=0.9, strip_accents="unicode")),
|
| 427 |
("ovr", OneVsRestClassifier(
|
| 428 |
LogisticRegression(
|
| 429 |
+
solver="saga",
|
| 430 |
+
penalty="l2",
|
| 431 |
+
C=0.5,
|
| 432 |
+
tol=1e-3,
|
| 433 |
+
max_iter=5000,
|
| 434 |
+
class_weight="balanced"
|
| 435 |
),
|
| 436 |
n_jobs=-1
|
| 437 |
))
|
|
|
|
| 450 |
if not CLASSIFIER: return []
|
| 451 |
proba = CLASSIFIER.predict_proba([text_augmented])[0]
|
| 452 |
max_p = float(np.max(proba)) if len(proba) else 0.0
|
| 453 |
+
thr = max(0.10, 0.30 * max_p + 0.15)
|
| 454 |
idxs = [i for i, p in enumerate(proba) if p >= thr] or [int(np.argmax(proba))]
|
| 455 |
idxs.sort(key=lambda i: proba[i], reverse=True)
|
| 456 |
return [(LABEL_NAMES[i], float(proba[i])) for i in idxs]
|
| 457 |
|
| 458 |
def detect_emotion_text(message: str, history):
|
| 459 |
labels = classify_text(augment_text(message, history))
|
| 460 |
+
if not labels: return "neutral"
|
|
|
|
| 461 |
bucket = {}
|
| 462 |
for lbl, p in labels:
|
| 463 |
app = GOEMO_TO_APP.get(lbl.lower(), "neutral")
|
| 464 |
bucket[app] = max(bucket.get(app, 0.0), p)
|
| 465 |
return max(bucket, key=bucket.get) if bucket else "neutral"
|
| 466 |
|
| 467 |
+
# ---------------- Advice engine ----------------
|
| 468 |
def pick_advice_from_pool(emotion: str, pool: dict, last_tip: str = ""):
|
| 469 |
tips_all = SUGGESTIONS.get(emotion, SUGGESTIONS["neutral"])
|
| 470 |
entry = pool.get(emotion, {"unused": [], "last": ""})
|
|
|
|
| 638 |
return msg, drop, table
|
| 639 |
|
| 640 |
def _load_entry_fill(entry_id):
|
|
|
|
| 641 |
if entry_id is None:
|
| 642 |
return "", "neutral", "", ""
|
| 643 |
data = journal_get(entry_id)
|
|
|
|
| 689 |
j_refresh.click(_refresh_entries, inputs=[j_search], outputs=[j_entries, j_table])
|
| 690 |
j_search.submit(_refresh_entries, inputs=[j_search], outputs=[j_entries, j_table])
|
| 691 |
|
|
|
|
| 692 |
j_entries.change(_load_entry_fill, inputs=[j_entries],
|
| 693 |
outputs=[j_title, j_emotion, j_text, j_view])
|
| 694 |
|