Spaces:
Sleeping
Sleeping
Commit
·
8705e71
1
Parent(s):
a6fb37c
newe
Browse files
app.py
CHANGED
|
@@ -1,14 +1,21 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
from sklearn.linear_model import LinearRegression
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
import io
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
-
def linear_regression(
|
| 9 |
-
#
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Perform linear regression
|
| 14 |
model = LinearRegression()
|
|
@@ -21,8 +28,8 @@ def linear_regression(x_values, y_values):
|
|
| 21 |
plt.figure(figsize=(10, 6))
|
| 22 |
plt.scatter(X, y, color='blue')
|
| 23 |
plt.plot(X, y_pred, color='red')
|
| 24 |
-
plt.xlabel(
|
| 25 |
-
plt.ylabel(
|
| 26 |
plt.title('Linear Regression')
|
| 27 |
|
| 28 |
# Save plot to a buffer and convert to PIL Image
|
|
@@ -36,20 +43,29 @@ def linear_regression(x_values, y_values):
|
|
| 36 |
|
| 37 |
return image, coef_info
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
# Gradio interface
|
| 40 |
iface = gr.Interface(
|
| 41 |
fn=linear_regression,
|
| 42 |
-
inputs=[
|
| 43 |
-
gr.components.Textbox(placeholder="Enter X values separated by commas (e.g., 1,2,3)", label="X Values"),
|
| 44 |
-
gr.components.Textbox(placeholder="Enter Y values separated by commas (e.g., 2,4,6)", label="Y Values")
|
| 45 |
-
],
|
| 46 |
outputs=[
|
| 47 |
gr.components.Image(type="pil"),
|
| 48 |
gr.components.Textbox(label="Regression Info")
|
| 49 |
],
|
| 50 |
title="Automatic Linear Regression Modeling",
|
| 51 |
-
description="
|
| 52 |
-
|
|
|
|
| 53 |
|
| 54 |
# Launch the app
|
| 55 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pandas as pd
|
| 3 |
import numpy as np
|
| 4 |
from sklearn.linear_model import LinearRegression
|
| 5 |
import matplotlib.pyplot as plt
|
| 6 |
import io
|
| 7 |
from PIL import Image
|
| 8 |
|
| 9 |
+
def linear_regression(input_csv):
|
| 10 |
+
# Load dataset from binary
|
| 11 |
+
df = pd.read_csv(io.BytesIO(input_csv))
|
| 12 |
+
|
| 13 |
+
# Assume the first column is X and the second column is Y
|
| 14 |
+
if len(df.columns) < 2:
|
| 15 |
+
return None, "CSV file must contain at least two columns."
|
| 16 |
+
|
| 17 |
+
X = df.iloc[:, 0].values.reshape(-1, 1)
|
| 18 |
+
y = df.iloc[:, 1].values
|
| 19 |
|
| 20 |
# Perform linear regression
|
| 21 |
model = LinearRegression()
|
|
|
|
| 28 |
plt.figure(figsize=(10, 6))
|
| 29 |
plt.scatter(X, y, color='blue')
|
| 30 |
plt.plot(X, y_pred, color='red')
|
| 31 |
+
plt.xlabel(df.columns[0])
|
| 32 |
+
plt.ylabel(df.columns[1])
|
| 33 |
plt.title('Linear Regression')
|
| 34 |
|
| 35 |
# Save plot to a buffer and convert to PIL Image
|
|
|
|
| 43 |
|
| 44 |
return image, coef_info
|
| 45 |
|
| 46 |
+
# Tutorial Markdown
|
| 47 |
+
tutorial_markdown = """
|
| 48 |
+
## Tutorial
|
| 49 |
+
|
| 50 |
+
Follow these steps to use the application:
|
| 51 |
+
|
| 52 |
+
1. Prepare a CSV file with two columns. The first column should be your independent variable (X), and the second column your dependent variable (Y).
|
| 53 |
+
2. Upload the CSV file using the 'File Upload' field.
|
| 54 |
+
3. The application will automatically process the file, perform linear regression, and display the results and a plot.
|
| 55 |
+
"""
|
| 56 |
+
|
| 57 |
# Gradio interface
|
| 58 |
iface = gr.Interface(
|
| 59 |
fn=linear_regression,
|
| 60 |
+
inputs=[gr.components.File(type="binary")],
|
|
|
|
|
|
|
|
|
|
| 61 |
outputs=[
|
| 62 |
gr.components.Image(type="pil"),
|
| 63 |
gr.components.Textbox(label="Regression Info")
|
| 64 |
],
|
| 65 |
title="Automatic Linear Regression Modeling",
|
| 66 |
+
description="Upload a CSV file with two columns. The first column will be used as X (independent variable) and the second as Y (dependent variable).",
|
| 67 |
+
layout="vertical"
|
| 68 |
+
).add_instructions(tutorial_markdown)
|
| 69 |
|
| 70 |
# Launch the app
|
| 71 |
if __name__ == "__main__":
|