Spaces:
Sleeping
Sleeping
Commit
·
7c2306e
1
Parent(s):
2487585
wew
Browse files- app.py +45 -52
- requirements.txt +4 -1
app.py
CHANGED
|
@@ -1,56 +1,49 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
fn=
|
| 45 |
-
inputs=
|
| 46 |
-
|
| 47 |
-
gr.Textbox(label="Start Date", placeholder="YYYY-MM-DD"),
|
| 48 |
-
gr.Textbox(label="End Date", placeholder="YYYY-MM-DD")
|
| 49 |
-
],
|
| 50 |
-
outputs=["html", "plot"],
|
| 51 |
-
title="Personalized Stock Market Data App",
|
| 52 |
-
description="Enter a stock symbol and date range to fetch its daily time series data."
|
| 53 |
)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, confusion_matrix, roc_curve, auc
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
# Initialize the sentiment analysis pipeline with a multilingual model
|
| 8 |
+
sentiment_analysis = pipeline("sentiment-analysis", model="bert-base-multilingual-cased")
|
| 9 |
+
|
| 10 |
+
def analyze_sentiment(text):
|
| 11 |
+
result = sentiment_analysis(text)
|
| 12 |
+
return result[0]
|
| 13 |
+
|
| 14 |
+
# Mock functions to calculate metrics - Replace with actual implementation
|
| 15 |
+
def calculate_metrics(y_true, y_pred):
|
| 16 |
+
accuracy = accuracy_score(y_true, y_pred)
|
| 17 |
+
precision, recall, f1, _ = precision_recall_fscore_support(y_true, y_pred, average='binary')
|
| 18 |
+
cm = confusion_matrix(y_true, y_pred)
|
| 19 |
+
fpr, tpr, _ = roc_curve(y_true, y_pred)
|
| 20 |
+
roc_auc = auc(fpr, tpr)
|
| 21 |
+
return accuracy, precision, recall, f1, cm, fpr, tpr, roc_auc
|
| 22 |
+
|
| 23 |
+
def plot_confusion_matrix(cm):
|
| 24 |
+
# Plot confusion matrix here
|
| 25 |
+
pass
|
| 26 |
+
|
| 27 |
+
def plot_roc_curve(fpr, tpr, roc_auc):
|
| 28 |
+
# Plot ROC curve here
|
| 29 |
+
pass
|
| 30 |
+
|
| 31 |
+
# Replace this with actual test data and predictions
|
| 32 |
+
y_true = [0, 1, 0, 1] # True labels
|
| 33 |
+
y_pred = [0, 1, 0, 1] # Predicted labels
|
| 34 |
+
|
| 35 |
+
# Calculate metrics
|
| 36 |
+
accuracy, precision, recall, f1, cm, fpr, tpr, roc_auc = calculate_metrics(y_true, y_pred)
|
| 37 |
+
|
| 38 |
+
# Plot confusion matrix and ROC curve
|
| 39 |
+
plot_confusion_matrix(cm)
|
| 40 |
+
plot_roc_curve(fpr, tpr, roc_auc)
|
| 41 |
+
|
| 42 |
+
# Create a Gradio interface
|
| 43 |
+
interface = gr.Interface(
|
| 44 |
+
fn=analyze_sentiment,
|
| 45 |
+
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter Text Here..."),
|
| 46 |
+
outputs="text"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
|
| 49 |
+
interface.launch()
|
|
|
requirements.txt
CHANGED
|
@@ -1 +1,4 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers==4.36.2
|
| 2 |
+
gradio==4.14.0
|
| 3 |
+
scikit-learn
|
| 4 |
+
matplotlib
|