Spaces:
Running
on
Zero
Running
on
Zero
File size: 28,141 Bytes
4724018 cd8c152 4724018 d0d52d5 4724018 cd8c152 4724018 cd8c152 4724018 cd8c152 4724018 cd8c152 4724018 cd8c152 4724018 cd8c152 4724018 cd8c152 4724018 cd8c152 4724018 cd8c152 4724018 4a26aeb 4724018 cd8c152 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
import os
import gradio as gr
import json
import ast
import atexit
import shutil
import sys
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from gradio_image_prompter import ImagePrompter
from omegaconf import OmegaConf
from PIL import Image, ImageDraw
import numpy as np
from copy import deepcopy
import cv2
import spaces
sys.path.append("libs")
sys.path.append("libs/LGM")
sys.path.append("libs/das")
sys.path.append("libs/sam2")
import torch.nn.functional as F
import torchvision
from torchvision import transforms
from einops import rearrange
import tempfile
import gc
from diffusers.utils import export_to_gif
import imageio
import sys
from sam2.sam2_image_predictor import SAM2ImagePredictor
from kiui.cam import orbit_camera
from src.utils.image_process import pred_bbox
from src.utils.load_utils import load_sv3d_pipeline, load_LGM, load_diffusion, gen_tracking_video, normalize_points, load_das
from src.utils.ui_utils import mask_image, image_preprocess, plot_point_cloud
from das.infer import load_media
from huggingface_hub import snapshot_download
if not os.path.exists("./checkpoints"):
snapshot_download(
repo_id="chenwang/physctrl",
local_dir="./",
local_dir_use_symlinks=False
)
import tyro
from tqdm import tqdm
from LGM.core.options import AllConfigs
from LGM.core.gs import GaussianRenderer
from LGM.mvdream.pipeline_mvdream import MVDreamPipeline
import h5py
os.environ["OMP_NUM_THREADS"] = "1"
# if torch.cuda.is_available():
# device = torch.device("cuda")
# elif torch.backends.mps.is_available():
# device = torch.device("mps")
# else:
# device = torch.device("cpu")
# print(f"using device: {device}")
device = torch.device('cuda')
segmentor = SAM2ImagePredictor.from_pretrained("facebook/sam2-hiera-tiny", cache_dir="ckpt", device='cuda')
height, width = 480, 720
num_frames, sv3d_res = 20, 576
print(f"loading sv3d pipeline...")
sv3d_pipeline = load_sv3d_pipeline(device)
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
sys.argv = ['pipeline_track_gen.py', 'big']
opt = tyro.cli(AllConfigs)
lgm_model = load_LGM(opt, device)
print(f'loading diffusion model...')
diffusion_model = load_diffusion(device=device, model_cfg_path='./src/configs/eval_base.yaml', diffusion_ckpt_path='./checkpoints/physctrl_base.safetensors')
temp_dir = tempfile.mkdtemp()
#s delete temp_dir after program exits
atexit.register(lambda: shutil.rmtree(temp_dir))
# temp_dir = './debug'
output_dir = temp_dir
print(f"using temp directory: {output_dir}")
print('loading das...')
das_model = load_das(0, output_dir)
import random
def set_all_seeds(seed):
"""Sets random seeds for Python, NumPy, and PyTorch."""
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if using multiple GPUs
set_all_seeds(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def process_image(raw_input):
image, points = raw_input['image'], raw_input['points']
image = image.resize((width, height))
image.save(f'{output_dir}/image.png')
return image, {'image': image, 'points': points}
@spaces.GPU
def segment(canvas, image, logits):
if logits is not None:
logits *= 32.0
_, points = canvas['image'], canvas['points']
image = np.array(image)
with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
segmentor.set_image(image)
input_points = []
input_boxes = []
for p in points:
[x1, y1, _, x2, y2, _] = p
if x2==0 and y2==0:
input_points.append([x1, y1])
else:
input_boxes.append([x1, y1, x2, y2])
if len(input_points) == 0:
input_points = None
input_labels = None
else:
input_points = np.array(input_points)
input_labels = np.ones(len(input_points))
input_boxes = pred_bbox(Image.fromarray(image))
if len(input_boxes) == 0:
input_boxes = None
else:
input_boxes = np.array(input_boxes)
masks, _, logits = segmentor.predict(
point_coords=input_points,
point_labels=input_labels,
box=input_boxes,
multimask_output=False,
return_logits=True,
mask_input=logits,
)
mask = masks > 0
masked_img = mask_image(image, mask[0], color=[252, 140, 90], alpha=0.9)
masked_img = Image.fromarray(masked_img)
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8)
out_image[:, :, :3] = image
out_image_bbox = out_image.copy()
out_image_bbox[:, :, 3] = (
mask.astype(np.uint8) * 255
)
out_image_bbox = Image.fromarray(out_image_bbox)
y, x, res, sv3d_image = image_preprocess(out_image_bbox, target_res=sv3d_res, lower_contrast=False, rescale=True)
np.save(f'{output_dir}/crop_info.npy', np.array([y, x, res]))
print(f'crop_info: {y}, {x}, {res}')
return mask[0], {'image': masked_img, 'points': points}, out_image_bbox, {'crop_y_start': y, 'crop_x_start': x, 'crop_res': res}, sv3d_image
@spaces.GPU
def run_sv3d(image, seed=0):
num_frames, sv3d_res = 20, 576
elevations_deg = [0] * num_frames
polars_rad = [np.deg2rad(90 - e) for e in elevations_deg]
azimuths_deg = np.linspace(0, 360, num_frames + 1)[1:] % 360
azimuths_rad = [np.deg2rad((a - azimuths_deg[-1]) % 360) for a in azimuths_deg]
azimuths_rad[:-1].sort()
with torch.no_grad():
with torch.autocast("cuda", dtype=torch.float16, enabled=True):
if len(image.split()) == 4: # RGBA
input_image = Image.new("RGB", image.size, (255, 255, 255)) # pure white bg
input_image.paste(image, mask=image.split()[3]) # 3rd is the alpha channel
else:
input_image = image
video_frames = sv3d_pipeline(
input_image.resize((sv3d_res, sv3d_res)),
height=sv3d_res,
width=sv3d_res,
num_frames=num_frames,
decode_chunk_size=8, # smaller to save memory
polars_rad=polars_rad,
azimuths_rad=azimuths_rad,
generator=torch.manual_seed(seed),
).frames[0]
torch.cuda.empty_cache()
gc.collect()
# export_to_gif(video_frames, f"./debug/view_animation.gif", fps=7)
for i, frame in enumerate(video_frames):
# frame = frame.resize((res, res))
frame.save(f"{output_dir}/{i:03d}.png")
save_idx = [19, 4, 9, 14]
for i in range(4):
video_frames[save_idx[i]].save(f"{output_dir}/view_{i}.png")
return [video_frames[i] for i in save_idx]
@spaces.GPU
def run_LGM(image, seed=0):
sv3d_frames = run_sv3d(image, seed)
model = lgm_model
rays_embeddings = model.prepare_default_rays(device)
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
proj_matrix[0, 0] = 1 / tan_half_fov
proj_matrix[1, 1] = 1 / tan_half_fov
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
proj_matrix[2, 3] = 1
images = []
for i in range(4):
# image = Image.open(f"{base_dir}/view_{i}.png")
image = sv3d_frames[i]
image = image.resize((256, 256))
image = np.array(image)
image = image.astype(np.float32) / 255.0
if image.shape[-1] == 4:
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
images.append(image)
mv_image = np.stack(images, axis=0)
# generate gaussians
input_image = torch.from_numpy(mv_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
with torch.no_grad():
with torch.autocast(device_type='cuda', dtype=torch.float16):
# generate gaussians
gaussians = model.forward_gaussians(input_image)
# save gaussians
model.gs.save_ply(gaussians, f'{output_dir}/point_cloud.ply')
# render front view
cam_poses = torch.from_numpy(orbit_camera(0, 0, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
# cam_poses = torch.from_numpy(orbit_camera(45, 225, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
np.save(f'{output_dir}/projection.npy', cam_view_proj[0].cpu().numpy())
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
image_save = (image[0, 0].permute(1, 2, 0).contiguous().float().cpu().numpy() * 255).astype(np.uint8)
Image.fromarray(image_save).save(f'{output_dir}/front_view.png')
images = []
azimuth = np.arange(0, 360, 2, dtype=np.int32)
elevation = 0
for azi in tqdm(azimuth):
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
image = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
images = np.concatenate(images, axis=0)
out_video_dir = f'{output_dir}/gs_animation.mp4'
imageio.mimwrite(out_video_dir, images, fps=30)
points, center, scale = normalize_points(output_dir)
points_plot = plot_point_cloud(points, [])
np.save(f'{output_dir}/center.npy', center)
np.save(f'{output_dir}/scale.npy', scale)
print('center: ', center, 'scale: ', scale)
return points_plot, points
norm_fac = 5
mat_labels = {'elastic': 0, 'plasticine': 1, 'sand': 2, 'rigid': 3}
@spaces.GPU
def run_diffusion(points, E_val, nu_val, x, y, z, u, v, w, force_coeff_val, floor_height=-1, fluid=False, seed=0, device='cuda'):
drag_point = np.array([x, y, z])
drag_dir = np.array([u, v, w])
drag_dir /= np.linalg.norm(drag_dir)
force_coeff = np.array(force_coeff_val)
drag_force = drag_dir * force_coeff
batch = {}
batch['floor_height'] = torch.from_numpy(np.array([floor_height])).unsqueeze(-1).float()
batch['points_src'] = (torch.from_numpy(points).float().unsqueeze(0) - norm_fac) / 2
if not fluid:
batch['drag_point'] = (torch.from_numpy(drag_point).float() - norm_fac) / 2
batch['force'] = torch.from_numpy(np.array(drag_force)).float()
batch['force'] = batch['force'] * torch.from_numpy(force_coeff) / torch.norm(batch['force'])
batch['E'] = torch.from_numpy(np.array(E_val)).unsqueeze(-1).float()
batch['nu'] = torch.from_numpy(np.array(nu_val)).unsqueeze(-1).float()
else:
batch['mask'] = torch.ones_like(batch['points_src'])
batch['drag_point'] = torch.zeros(1, 3)
batch['force'] = torch.zeros(1, 3)
batch['E'] = torch.zeros(1, 1)
batch['nu'] = torch.zeros(1, 1)
for k in batch:
batch[k] = batch[k].unsqueeze(0).to(device)
with torch.autocast("cuda", dtype=torch.bfloat16):
output = diffusion_model(batch['points_src'], batch['force'], batch['E'], batch['nu'], torch.ones_like(batch['points_src']).to(device)[..., :1],
batch['drag_point'], batch['floor_height'], gravity=None, y=None, coeff=batch['E'], device=device, batch_size=1,
generator=torch.Generator().manual_seed(seed), n_frames=24, num_inference_steps=25)
output = output.cpu().numpy()
for j in range(output.shape[0]):
# save_pointcloud_video(((output[j:j+1] * 2) + norm_fac).squeeze(), [], f'{output_dir}/gen_animation.gif', grid_lim=10)
np.save(f'{output_dir}/gen_data.npy', output[j:j+1].squeeze())
gen_tracking_video(output_dir)
return os.path.join(output_dir, 'tracks_gen/tracking/tracks_tracking.mp4')
@spaces.GPU
def run_diffusion_new(points, E_val, nu_val, x, y, z, u, v, w, force_coeff_val, material='elastic', drag_mode='point', drag_axis='z', seed=0, device='cuda'):
drag_point = np.array([x, y, z])
drag_dir = np.array([u, v, w])
# User input
has_gravity = (material != 'elastic')
force_coeff = np.array(force_coeff_val)
max_num_forces = 1
if drag_mode is not None and not has_gravity:
if drag_mode == "point":
drag_point = np.array(drag_point)
elif drag_mode == "max":
drag_point_idx = np.argmax(points[:, drag_axis]) if drag_mode == "max" \
else np.argmin(points[:, drag_axis])
drag_point = points[drag_point_idx]
else:
raise ValueError(f"Invalid drag mode: {drag_mode}")
drag_offset = np.abs(points - drag_point)
drag_mask = (drag_offset < 0.4).all(axis=-1)
drag_dir = np.array(drag_dir, dtype=np.float32)
drag_dir /= np.linalg.norm(drag_dir)
drag_force = drag_dir * force_coeff
else:
drag_mask = np.ones(N, dtype=bool)
drag_point = np.zeros(4)
drag_dir = np.zeros(3)
drag_force = np.zeros(3)
if material == "elastic":
log_E, nu = np.array(E_val), np.array(nu_val)
else:
log_E, nu = np.array(6), np.array(0.4) # Default values for non-elastic materials
print(f'[Diffusion Simulation] Number of drag points: {drag_mask.sum()}/{2048}')
print(f'[Diffusion Simulation] Drag point: {drag_point}')
print(f'[Diffusion Simulation] log_E: {log_E}, ν: {nu}')
print(f'[Diffusion Simulation] Drag force: {drag_force}')
print(f'[Diffusion Simulation] Material type: {material})')
print(f'[Diffusion Simulation] Has gravity: {has_gravity}')
force_order = torch.arange(max_num_forces)
mask = torch.from_numpy(drag_mask).bool()
mask = mask.unsqueeze(0) if mask.ndim == 1 else mask
batch = {}
batch['gravity'] = torch.from_numpy(np.array(has_gravity)).long().unsqueeze(0)
batch['drag_point'] = torch.from_numpy(drag_point - norm_fac).float() / 2
batch['drag_point'] = batch['drag_point'].unsqueeze(0) # (1, 4)
batch['points_src'] = (torch.from_numpy(points).float().unsqueeze(0) - norm_fac) / 2
if has_gravity:
floor_normal = np.load(f'{output_dir}/floor_normal.npy')
floor_height = np.load(f'{output_dir}/floor_height.npy') * scale / 2.
batch['floor_height'] = torch.from_numpy(np.array(floor_height)).float().unsqueeze(0)
# Create rotation matrix to align floor normal with [0, 1, 0] (upward direction)
target_normal = np.array([0, 1, 0])
# Use Rodrigues' rotation formula to find rotation matrix
# Rotate from floor_normal to target_normal
v = np.cross(floor_normal, target_normal)
s = np.linalg.norm(v)
c = np.dot(floor_normal, target_normal)
if s < 1e-6: # If vectors are parallel
if c > 0: # Same direction
R_floor = np.eye(3)
else: # Opposite direction
R_floor = -np.eye(3)
else:
v = v / s
K = np.array([[0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0]])
R_floor = np.eye(3) + s * K + (1 - c) * (K @ K)
R_floor_tensor = torch.from_numpy(R_floor).float().to(device)
for i in range(batch['points_src'].shape[0]):
batch['points_src'][i] = (R_floor_tensor @ batch['points_src'][i].T).T
else:
batch['floor_height'] = torch.ones(1).float() * -2.4
print(f'[Diffusion Simulation] Floor height: {batch["floor_height"]}')
if mask.shape[1] == 0:
mask = torch.zeros(0, N).bool()
batch['force'] = torch.zeros(0, 3)
batch['drag_point'] = torch.zeros(0, 4)
else:
batch['force'] = torch.from_numpy(drag_force).float().unsqueeze(0)
batch['force'] = batch['force'] * torch.from_numpy(force_coeff) / torch.norm(batch['force'])
batch['mat_type'] = torch.from_numpy(np.array(mat_labels[material])).long()
if np.array(batch['mat_type']).item() == 3: # Rigid dataset
batch['is_mpm'] = torch.tensor(0).bool()
else:
batch['is_mpm'] = torch.tensor(1).bool()
if has_gravity: # Currently we only have either drag force or gravity
batch['force'] = torch.tensor([[0, -1.0, 0]]).to(device)
all_forces = torch.zeros(max_num_forces, 3)
all_forces[:batch['force'].shape[0]] = batch['force']
all_forces = all_forces[force_order]
batch['force'] = all_forces
all_drag_points = torch.zeros(max_num_forces, 4)
all_drag_points[:batch['drag_point'].shape[0], :batch['drag_point'].shape[1]] = batch['drag_point'] # The last dim of drag_point is not used now
all_drag_points = all_drag_points[force_order]
batch['drag_point'] = all_drag_points
if batch['gravity'][0] == 1: # add gravity to force
batch['force'] = torch.tensor([[0, -1.0, 0]]).float().to(device)
all_mask = torch.zeros(max_num_forces, 2048).bool()
all_mask[:mask.shape[0]] = mask
all_mask = all_mask[force_order]
batch['mask'] = all_mask[..., None] # (n_forces, N, 1) for compatibility
batch['E'] = torch.from_numpy(log_E).unsqueeze(-1).float() if log_E > 0 else torch.zeros(1).float()
batch['nu'] = torch.from_numpy(nu).unsqueeze(-1).float()
for k in batch:
batch[k] = batch[k].unsqueeze(0).to(device)
with torch.autocast("cuda", dtype=torch.bfloat16):
output = diffusion_model(batch['points_src'], batch['force'], batch['E'], batch['nu'], batch['mask'][..., :1],
batch['drag_point'], batch['floor_height'], batch['gravity'], coeff=batch['E'], generator=torch.Generator().manual_seed(seed),
device=device, batch_size=1, y=batch['mat_type'], n_frames=24, num_inference_steps=25)
output = output.cpu().numpy()
for j in range(output.shape[0]):
if batch['gravity'][0] == 1:
for k in range(output.shape[1]):
output[j, k] = (np.linalg.inv(R_floor) @ output[j, k].T).T
np.save(f'{output_dir}/gen_data.npy', output[j:j+1].squeeze())
gen_tracking_video(output_dir)
return os.path.join(output_dir, 'tracks_gen/tracking/tracks_tracking.mp4')
@spaces.GPU(duration=500)
def run_das(prompt, tracking_path, checkpoint_path='./checkpoints/cogshader5B'):
print(prompt, tracking_path)
input_path = os.path.join(output_dir, 'image.png')
video_tensor, fps, is_video = load_media(input_path)
tracking_tensor, _, _ = load_media(tracking_path)
das_model.apply_tracking(
video_tensor=video_tensor,
fps=24,
tracking_tensor=tracking_tensor,
img_cond_tensor=None,
prompt=prompt,
checkpoint_path=checkpoint_path
)
return os.path.join(output_dir, 'result.mp4')
def add_arrow(points, x, y, z, u, v, w, force_coeff):
direction = np.array([u, v, w])
direction /= np.linalg.norm(direction)
arrow = {'origin': [x, y, z], 'dir': direction * force_coeff}
arrows = [arrow]
points_plot = plot_point_cloud(points, arrows)
return points_plot
material_slider_config = {
"Elastic": [
{"label": "E", "minimum": 4, "maximum": 7, "step": 0.5, "value": 5.5},
{"label": "nu", "minimum": 0.2, "maximum": 0.4, "step": 0.05, "value": 0.3},
],
"Plasticine": [
{"label": "E", "minimum": 4, "maximum": 7, "step": 0.5, "value": 5.5},
{"label": "nu", "minimum": 0.2, "maximum": 0.4, "step": 0.05, "value": 0.3},
],
"Plastic": [
{"label": "E", "minimum": 4, "maximum": 7, "step": 0.5, "value": 5.5},
{"label": "nu", "minimum": 0.2, "maximum": 0.4, "step": 0.05, "value": 0.3},
],
"Rigid": [] # No sliders
}
def update_sliders(material):
sliders = material_slider_config[material]
# Prepare updates for both sliders
if len(sliders) == 2:
return (
gr.update(visible=True, interactive=True, **sliders[0]),
gr.update(visible=True, interactive=True, **sliders[1])
)
elif len(sliders) == 1:
return (
gr.update(visible=True, interactive=True, **sliders[0]),
gr.update(visible=False, interactive=False)
)
else:
return (
gr.update(visible=False, interactive=False),
gr.update(visible=False, interactive=False)
)
update_sliders('Elastic')
with gr.Blocks() as demo:
gr.Markdown("""
## PhysCtrl: Generative Physics for Controllable and Physics-Grounded Video Generation
### You can upload your own input image and set the force and material to generate the trajectory and final video.
### The text prompt of video generation should describe the action of the object, e.g., "the penguin is fully lifted upwards, as if there is a force applied onto its left wing".
### Given the limit of ZeroGPU usage at huggingface, the final video generation is not available currently. We are working on to fix that.
""")
mask = gr.State(value=None) # store mask
original_image = gr.State(value=None) # store original input image
mask_logits = gr.State(value=None) # store mask logits
masked_image = gr.State(value=None) # store masked image
crop_info = gr.State(value=None) # store crop info
sv3d_input = gr.State(value=None) # store sv3d input
sv3d_frames = gr.State(value=None) # store sv3d frames
points = gr.State(value=None) # store points
with gr.Column():
with gr.Row():
with gr.Column():
step1_dec = """
<font size="4"><b>Step 1: Upload Input Image and Segment Subject</b></font>
"""
step1 = gr.Markdown(step1_dec)
raw_input = ImagePrompter(type="pil", label="Input Image", show_label=True, interactive=True)
process_button = gr.Button("Process")
with gr.Column():
# Step 2: Get Subject Mask and Point Clouds
step2_dec = """
<font size="4"><b>Step 2.1: Get Subject Mask</b></font>
"""
step2 = gr.Markdown(step2_dec)
canvas = ImagePrompter(type="pil", label="Input Image", show_label=True, interactive=True) # for mask painting
step2_notes = """
- Click to add points to select the subject.
- Press `Segment Subject` to get the mask. <mark>Can be refined iteratively by updating points<mark>.
"""
notes = gr.Markdown(step2_notes)
segment_button = gr.Button("Segment Subject")
# with gr.Column():
# output_video = gr.Video(label="Rendered Video", format="mp4", width="auto", autoplay=True, interactive=False)
with gr.Column(scale=1):
step22_dec = """
<font size="4"><b>Step 2.2: Get 3D Points</b></font>
"""
step22 = gr.Markdown(step22_dec)
points_plot = gr.Plot(label="Point Cloud")
sv3d_button = gr.Button("Get 3D Points")
with gr.Column():
step3_dec = """
<font size="4"><b>Step 3: Add Force</b></font>
"""
step3 = gr.Markdown(step3_dec)
with gr.Row():
gr.Markdown('Add Drag Point')
with gr.Row():
x = gr.Number(label="X", min_width=50)
y = gr.Number(label="Y", min_width=50)
z = gr.Number(label="Z", min_width=50)
with gr.Row():
gr.Markdown('Add Drag Direction')
with gr.Row():
u = gr.Number(label="U", min_width=50)
v = gr.Number(label="V", min_width=50)
w = gr.Number(label="W", min_width=50)
step3_notes = """
<b>Direction will be normalized to unit length.</b>
"""
notes = gr.Markdown(step3_notes)
with gr.Row():
force_coeff = gr.Slider(label="Force Magnitude", minimum=0.02, maximum=0.2, step=0.02, value=0.045)
add_arrow_button = gr.Button("Add Force")
with gr.Row():
with gr.Column():
step4_dec = """
<font size="4"><b>Step 4: Select Material and Generate Trajectory</b></font>
"""
step4 = gr.Markdown(step4_dec)
tracking_video = gr.Video(label="Tracking Video", format="mp4", width="auto", autoplay=True, interactive=False)
with gr.Row():
# material_radio = gr.Radio(
# choices=list(material_slider_config.keys()),
# label="Choose Material",
# value="Rigid"
# )
# slider1 = gr.Slider(visible=True)
# slider2 = gr.Slider(visible=True)
slider1 = gr.Slider(label="E", visible=True, interactive=True, minimum=4, maximum=7, step=0.5, value=5.5)
slider2 = gr.Slider(visible=False, minimum=0.2, maximum=0.4, step=0.05, value=0.3)
run_diffusion_button = gr.Button("Generate Trajectory")
with gr.Column():
step5_dec = """
<font size="4"><b>Step 5: Generate Final Video</b></font>
"""
step5 = gr.Markdown(step5_dec)
final_video = gr.Video(label="Final Video", format="mp4", width="auto", autoplay=True, interactive=False)
text = gr.Textbox(label="Prompt")
gen_video_button = gr.Button("Generate Final Video")
# material_radio.change(
# fn=update_sliders,
# inputs=material_radio,
# outputs=[slider1, slider2]
# )
process_button.click(
fn = process_image,
inputs = [raw_input],
outputs = [original_image, canvas]
)
segment_button.click(
fn = segment,
inputs = [canvas, original_image, mask_logits],
outputs = [mask, canvas, masked_image, crop_info, sv3d_input]
)
sv3d_button.click(
fn = run_LGM,
inputs = [sv3d_input],
outputs = [points_plot, points]
)
add_arrow_button.click(
fn=add_arrow,
inputs=[points, x, y, z, u, v, w, force_coeff],
outputs=points_plot
)
run_diffusion_button.click(
fn=run_diffusion_new,
inputs=[points, slider1, slider2, x, y, z, u, v, w, force_coeff],
outputs=tracking_video
)
gen_video_button.click(
fn=run_das,
inputs=[text, tracking_video],
outputs=final_video
)
demo.queue().launch()
|