Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright 2024 The CogVideoX team, Tsinghua University & ZhipuAI and The HuggingFace Team. | |
| # All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| from typing import Any, Dict, Optional, Tuple, Union | |
| import torch | |
| from torch import nn | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.loaders import PeftAdapterMixin | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers | |
| from diffusers.utils import is_accelerate_version, is_accelerate_available | |
| from diffusers.utils.torch_utils import maybe_allow_in_graph | |
| from diffusers.models.attention import Attention, FeedForward | |
| from diffusers.models.attention_processor import AttentionProcessor, CogVideoXAttnProcessor2_0, FusedCogVideoXAttnProcessor2_0 | |
| from diffusers.models.embeddings import TimestepEmbedding, Timesteps | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.normalization import AdaLayerNorm, CogVideoXLayerNormZero | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| def get_1d_sincos_pos_embed_from_grid(embed_dim, pos): | |
| """ | |
| This function generates 1D positional embeddings from a grid. | |
| Args: | |
| embed_dim (`int`): The embedding dimension `D` | |
| pos (`torch.Tensor`): 1D tensor of positions with shape `(M,)` | |
| Returns: | |
| `torch.Tensor`: Sinusoidal positional embeddings of shape `(M, D)`. | |
| """ | |
| if embed_dim % 2 != 0: | |
| raise ValueError("embed_dim must be divisible by 2") | |
| omega = torch.arange(embed_dim // 2, device=pos.device, dtype=torch.float64) | |
| omega /= embed_dim / 2.0 | |
| omega = 1.0 / 10000**omega # (D/2,) | |
| pos = pos.reshape(-1) # (M,) | |
| out = torch.outer(pos, omega) # (M, D/2), outer product | |
| emb_sin = torch.sin(out) # (M, D/2) | |
| emb_cos = torch.cos(out) # (M, D/2) | |
| emb = torch.concat([emb_sin, emb_cos], dim=1) # (M, D) | |
| return emb | |
| def get_3d_sincos_pos_embed( | |
| embed_dim: int, | |
| spatial_size: Union[int, Tuple[int, int]], | |
| temporal_size: int, | |
| spatial_interpolation_scale: float = 1.0, | |
| temporal_interpolation_scale: float = 1.0, | |
| device: Optional[torch.device] = None, | |
| output_type: str = "np", | |
| ) -> torch.Tensor: | |
| r""" | |
| Creates 3D sinusoidal positional embeddings. | |
| Args: | |
| embed_dim (`int`): | |
| The embedding dimension of inputs. It must be divisible by 16. | |
| spatial_size (`int` or `Tuple[int, int]`): | |
| The spatial dimension of positional embeddings. If an integer is provided, the same size is applied to both | |
| spatial dimensions (height and width). | |
| temporal_size (`int`): | |
| The temporal dimension of postional embeddings (number of frames). | |
| spatial_interpolation_scale (`float`, defaults to 1.0): | |
| Scale factor for spatial grid interpolation. | |
| temporal_interpolation_scale (`float`, defaults to 1.0): | |
| Scale factor for temporal grid interpolation. | |
| Returns: | |
| `torch.Tensor`: | |
| The 3D sinusoidal positional embeddings of shape `[temporal_size, spatial_size[0] * spatial_size[1], | |
| embed_dim]`. | |
| """ | |
| if embed_dim % 4 != 0: | |
| raise ValueError("`embed_dim` must be divisible by 4") | |
| embed_dim_spatial = 3 * embed_dim // 4 | |
| embed_dim_temporal = embed_dim // 4 | |
| # 1. Spatial | |
| grid_pc = torch.arange(spatial_size, device=device, dtype=torch.float32) / spatial_interpolation_scale | |
| pos_embed_spatial = get_1d_sincos_pos_embed_from_grid(embed_dim_spatial, grid_pc) | |
| # 2. Temporal | |
| grid_t = torch.arange(temporal_size, device=device, dtype=torch.float32) / temporal_interpolation_scale | |
| pos_embed_temporal = get_1d_sincos_pos_embed_from_grid(embed_dim_temporal, grid_t) | |
| # 3. Concat | |
| pos_embed_spatial = pos_embed_spatial[None, :, :] | |
| pos_embed_spatial = pos_embed_spatial.repeat_interleave(temporal_size, dim=0) # [T, H*W, D // 4 * 3] | |
| pos_embed_temporal = pos_embed_temporal[:, None, :] | |
| pos_embed_temporal = pos_embed_temporal.repeat_interleave(spatial_size, dim=1) # [T, H*W, D // 4] | |
| pos_embed = torch.concat([pos_embed_temporal, pos_embed_spatial], dim=-1) # [T, H*W, D] | |
| return pos_embed | |
| class CogVideoXBlock(nn.Module): | |
| r""" | |
| Transformer block used in [CogVideoX](https://github.com/THUDM/CogVideo) model. | |
| Parameters: | |
| dim (`int`): | |
| The number of channels in the input and output. | |
| num_attention_heads (`int`): | |
| The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`): | |
| The number of channels in each head. | |
| time_embed_dim (`int`): | |
| The number of channels in timestep embedding. | |
| dropout (`float`, defaults to `0.0`): | |
| The dropout probability to use. | |
| activation_fn (`str`, defaults to `"gelu-approximate"`): | |
| Activation function to be used in feed-forward. | |
| attention_bias (`bool`, defaults to `False`): | |
| Whether or not to use bias in attention projection layers. | |
| qk_norm (`bool`, defaults to `True`): | |
| Whether or not to use normalization after query and key projections in Attention. | |
| norm_elementwise_affine (`bool`, defaults to `True`): | |
| Whether to use learnable elementwise affine parameters for normalization. | |
| norm_eps (`float`, defaults to `1e-5`): | |
| Epsilon value for normalization layers. | |
| final_dropout (`bool` defaults to `False`): | |
| Whether to apply a final dropout after the last feed-forward layer. | |
| ff_inner_dim (`int`, *optional*, defaults to `None`): | |
| Custom hidden dimension of Feed-forward layer. If not provided, `4 * dim` is used. | |
| ff_bias (`bool`, defaults to `True`): | |
| Whether or not to use bias in Feed-forward layer. | |
| attention_out_bias (`bool`, defaults to `True`): | |
| Whether or not to use bias in Attention output projection layer. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| num_attention_heads: int, | |
| attention_head_dim: int, | |
| time_embed_dim: int, | |
| dropout: float = 0.0, | |
| activation_fn: str = "gelu-approximate", | |
| attention_bias: bool = False, | |
| qk_norm: bool = True, | |
| norm_elementwise_affine: bool = True, | |
| norm_eps: float = 1e-5, | |
| final_dropout: bool = True, | |
| ff_inner_dim: Optional[int] = None, | |
| ff_bias: bool = True, | |
| attention_out_bias: bool = True, | |
| ): | |
| super().__init__() | |
| # 1. Self Attention | |
| self.norm1 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) | |
| self.attn1 = Attention( | |
| query_dim=dim, | |
| dim_head=attention_head_dim, | |
| heads=num_attention_heads, | |
| qk_norm="layer_norm" if qk_norm else None, | |
| eps=1e-6, | |
| bias=attention_bias, | |
| out_bias=attention_out_bias, | |
| processor=CogVideoXAttnProcessor2_0(), | |
| ) | |
| # 2. Feed Forward | |
| self.norm2 = CogVideoXLayerNormZero(time_embed_dim, dim, norm_elementwise_affine, norm_eps, bias=True) | |
| self.ff = FeedForward( | |
| dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| final_dropout=final_dropout, | |
| inner_dim=ff_inner_dim, | |
| bias=ff_bias, | |
| ) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: torch.Tensor, | |
| temb: torch.Tensor, | |
| image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| ) -> torch.Tensor: | |
| text_seq_length = encoder_hidden_states.size(1) | |
| # norm & modulate | |
| norm_hidden_states, norm_encoder_hidden_states, gate_msa, enc_gate_msa = self.norm1( | |
| hidden_states, encoder_hidden_states, temb | |
| ) | |
| # attention | |
| attn_hidden_states, attn_encoder_hidden_states = self.attn1( | |
| hidden_states=norm_hidden_states, | |
| encoder_hidden_states=norm_encoder_hidden_states, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| hidden_states = hidden_states + gate_msa * attn_hidden_states | |
| encoder_hidden_states = encoder_hidden_states + enc_gate_msa * attn_encoder_hidden_states | |
| # norm & modulate | |
| norm_hidden_states, norm_encoder_hidden_states, gate_ff, enc_gate_ff = self.norm2( | |
| hidden_states, encoder_hidden_states, temb | |
| ) | |
| # feed-forward | |
| norm_hidden_states = torch.cat([norm_encoder_hidden_states, norm_hidden_states], dim=1) | |
| ff_output = self.ff(norm_hidden_states) | |
| hidden_states = hidden_states + gate_ff * ff_output[:, text_seq_length:] | |
| encoder_hidden_states = encoder_hidden_states + enc_gate_ff * ff_output[:, :text_seq_length] | |
| return hidden_states, encoder_hidden_states | |
| class CogVideoXTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin): | |
| """ | |
| A Transformer model for video-like data in [CogVideoX](https://github.com/THUDM/CogVideo). | |
| Parameters: | |
| num_attention_heads (`int`, defaults to `30`): | |
| The number of heads to use for multi-head attention. | |
| attention_head_dim (`int`, defaults to `64`): | |
| The number of channels in each head. | |
| in_channels (`int`, defaults to `16`): | |
| The number of channels in the input. | |
| out_channels (`int`, *optional*, defaults to `16`): | |
| The number of channels in the output. | |
| flip_sin_to_cos (`bool`, defaults to `True`): | |
| Whether to flip the sin to cos in the time embedding. | |
| time_embed_dim (`int`, defaults to `512`): | |
| Output dimension of timestep embeddings. | |
| ofs_embed_dim (`int`, defaults to `512`): | |
| Output dimension of "ofs" embeddings used in CogVideoX-5b-I2B in version 1.5 | |
| text_embed_dim (`int`, defaults to `4096`): | |
| Input dimension of text embeddings from the text encoder. | |
| num_layers (`int`, defaults to `30`): | |
| The number of layers of Transformer blocks to use. | |
| dropout (`float`, defaults to `0.0`): | |
| The dropout probability to use. | |
| attention_bias (`bool`, defaults to `True`): | |
| Whether to use bias in the attention projection layers. | |
| sample_width (`int`, defaults to `90`): | |
| The width of the input latents. | |
| sample_height (`int`, defaults to `60`): | |
| The height of the input latents. | |
| sample_frames (`int`, defaults to `49`): | |
| The number of frames in the input latents. Note that this parameter was incorrectly initialized to 49 | |
| instead of 13 because CogVideoX processed 13 latent frames at once in its default and recommended settings, | |
| but cannot be changed to the correct value to ensure backwards compatibility. To create a transformer with | |
| K latent frames, the correct value to pass here would be: ((K - 1) * temporal_compression_ratio + 1). | |
| patch_size (`int`, defaults to `2`): | |
| The size of the patches to use in the patch embedding layer. | |
| temporal_compression_ratio (`int`, defaults to `4`): | |
| The compression ratio across the temporal dimension. See documentation for `sample_frames`. | |
| max_text_seq_length (`int`, defaults to `226`): | |
| The maximum sequence length of the input text embeddings. | |
| activation_fn (`str`, defaults to `"gelu-approximate"`): | |
| Activation function to use in feed-forward. | |
| timestep_activation_fn (`str`, defaults to `"silu"`): | |
| Activation function to use when generating the timestep embeddings. | |
| norm_elementwise_affine (`bool`, defaults to `True`): | |
| Whether to use elementwise affine in normalization layers. | |
| norm_eps (`float`, defaults to `1e-5`): | |
| The epsilon value to use in normalization layers. | |
| spatial_interpolation_scale (`float`, defaults to `1.875`): | |
| Scaling factor to apply in 3D positional embeddings across spatial dimensions. | |
| temporal_interpolation_scale (`float`, defaults to `1.0`): | |
| Scaling factor to apply in 3D positional embeddings across temporal dimensions. | |
| """ | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 8, | |
| attention_head_dim: int = 64, | |
| in_channels: int = 3, | |
| out_channels: Optional[int] = 3, | |
| flip_sin_to_cos: bool = True, | |
| freq_shift: int = 0, | |
| time_embed_dim: int = 512, | |
| ofs_embed_dim: Optional[int] = None, | |
| text_embed_dim: int = 4096, | |
| num_layers: int = 8, | |
| dropout: float = 0.0, | |
| attention_bias: bool = True, | |
| sample_points: int = 2048, | |
| sample_frames: int = 48, | |
| patch_size: int = 1, | |
| patch_size_t: Optional[int] = None, | |
| temporal_compression_ratio: int = 4, | |
| max_text_seq_length: int = 226, | |
| activation_fn: str = "gelu-approximate", | |
| timestep_activation_fn: str = "silu", | |
| norm_elementwise_affine: bool = True, | |
| norm_eps: float = 1e-5, | |
| spatial_interpolation_scale: float = 1.875, | |
| temporal_interpolation_scale: float = 1.0, | |
| use_positional_embeddings: bool = True, | |
| use_learned_positional_embeddings: bool = False, | |
| patch_bias: bool = True, | |
| cond_seq_length: int = 4 | |
| ): | |
| super().__init__() | |
| inner_dim = num_attention_heads * attention_head_dim | |
| if use_positional_embeddings and use_learned_positional_embeddings: | |
| raise ValueError( | |
| "There are no CogVideoX checkpoints available with disable rotary embeddings and learned positional " | |
| "embeddings. If you're using a custom model and/or believe this should be supported, please open an " | |
| "issue at https://github.com/huggingface/diffusers/issues." | |
| ) | |
| self.embedding_dropout = nn.Dropout(dropout) | |
| # 2. Time embeddings and ofs embedding(Only CogVideoX1.5-5B I2V have) | |
| self.time_proj = Timesteps(inner_dim, flip_sin_to_cos, freq_shift) | |
| self.time_embedding = TimestepEmbedding(inner_dim, time_embed_dim, timestep_activation_fn) | |
| self.ofs_proj = None | |
| self.ofs_embedding = None | |
| if ofs_embed_dim: | |
| self.ofs_proj = Timesteps(ofs_embed_dim, flip_sin_to_cos, freq_shift) | |
| self.ofs_embedding = TimestepEmbedding( | |
| ofs_embed_dim, ofs_embed_dim, timestep_activation_fn | |
| ) # same as time embeddings, for ofs | |
| # 3. Define spatio-temporal transformers blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| CogVideoXBlock( | |
| dim=inner_dim, | |
| num_attention_heads=num_attention_heads, | |
| attention_head_dim=attention_head_dim, | |
| time_embed_dim=time_embed_dim, | |
| dropout=dropout, | |
| activation_fn=activation_fn, | |
| attention_bias=attention_bias, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| self.norm_final = nn.LayerNorm(inner_dim, norm_eps, norm_elementwise_affine) | |
| # 4. Output blocks | |
| self.norm_out = AdaLayerNorm( | |
| embedding_dim=time_embed_dim, | |
| output_dim=2 * inner_dim, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| chunk_dim=1, | |
| ) | |
| if patch_size_t is None: | |
| # For CogVideox 1.0 | |
| output_dim = patch_size * patch_size * out_channels | |
| else: | |
| # For CogVideoX 1.5 | |
| output_dim = patch_size * patch_size * patch_size_t * out_channels | |
| self.proj_out = nn.Linear(inner_dim, output_dim) | |
| self.gradient_checkpointing = False | |
| if use_positional_embeddings or use_learned_positional_embeddings: | |
| self.embed_dim = num_attention_heads * attention_head_dim | |
| self.cond_seq_length = cond_seq_length | |
| persistent = use_learned_positional_embeddings | |
| pos_embedding = self._get_positional_embeddings(sample_points, sample_frames) | |
| self.register_buffer("pos_embedding", pos_embedding, persistent=persistent) | |
| def _get_positional_embeddings(self, points: int, frames: int, device: Optional[torch.device] = None) -> torch.Tensor: | |
| pos_embedding = get_3d_sincos_pos_embed( | |
| self.embed_dim, | |
| points, | |
| frames, | |
| device=device, | |
| output_type="pt", | |
| ) | |
| pos_embedding = pos_embedding.flatten(0, 1) | |
| joint_pos_embedding = pos_embedding.new_zeros( | |
| 1, self.cond_seq_length + points * frames, self.embed_dim, requires_grad=False | |
| ) | |
| joint_pos_embedding.data[:, self.cond_seq_length:].copy_(pos_embedding) | |
| return joint_pos_embedding | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| self.gradient_checkpointing = value | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors | |
| def attn_processors(self) -> Dict[str, AttentionProcessor]: | |
| r""" | |
| Returns: | |
| `dict` of attention processors: A dictionary containing all attention processors used in the model with | |
| indexed by its weight name. | |
| """ | |
| # set recursively | |
| processors = {} | |
| def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): | |
| if hasattr(module, "get_processor"): | |
| processors[f"{name}.processor"] = module.get_processor() | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) | |
| return processors | |
| for name, module in self.named_children(): | |
| fn_recursive_add_processors(name, module, processors) | |
| return processors | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor | |
| def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): | |
| r""" | |
| Sets the attention processor to use to compute attention. | |
| Parameters: | |
| processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): | |
| The instantiated processor class or a dictionary of processor classes that will be set as the processor | |
| for **all** `Attention` layers. | |
| If `processor` is a dict, the key needs to define the path to the corresponding cross attention | |
| processor. This is strongly recommended when setting trainable attention processors. | |
| """ | |
| count = len(self.attn_processors.keys()) | |
| if isinstance(processor, dict) and len(processor) != count: | |
| raise ValueError( | |
| f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" | |
| f" number of attention layers: {count}. Please make sure to pass {count} processor classes." | |
| ) | |
| def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): | |
| if hasattr(module, "set_processor"): | |
| if not isinstance(processor, dict): | |
| module.set_processor(processor) | |
| else: | |
| module.set_processor(processor.pop(f"{name}.processor")) | |
| for sub_name, child in module.named_children(): | |
| fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) | |
| for name, module in self.named_children(): | |
| fn_recursive_attn_processor(name, module, processor) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.fuse_qkv_projections with FusedAttnProcessor2_0->FusedCogVideoXAttnProcessor2_0 | |
| def fuse_qkv_projections(self): | |
| """ | |
| Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value) | |
| are fused. For cross-attention modules, key and value projection matrices are fused. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| self.original_attn_processors = None | |
| for _, attn_processor in self.attn_processors.items(): | |
| if "Added" in str(attn_processor.__class__.__name__): | |
| raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.") | |
| self.original_attn_processors = self.attn_processors | |
| for module in self.modules(): | |
| if isinstance(module, Attention): | |
| module.fuse_projections(fuse=True) | |
| self.set_attn_processor(FusedCogVideoXAttnProcessor2_0()) | |
| # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.unfuse_qkv_projections | |
| def unfuse_qkv_projections(self): | |
| """Disables the fused QKV projection if enabled. | |
| <Tip warning={true}> | |
| This API is 🧪 experimental. | |
| </Tip> | |
| """ | |
| if self.original_attn_processors is not None: | |
| self.set_attn_processor(self.original_attn_processors) | |
| def forward( | |
| self, | |
| full_seq: torch.Tensor, # [batch_size] | |
| timestep: Union[int, float, torch.LongTensor], | |
| timestep_cond: Optional[torch.Tensor] = None, | |
| ofs: Optional[Union[int, float, torch.LongTensor]] = None, | |
| image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, | |
| attention_kwargs: Optional[Dict[str, Any]] = None, | |
| return_dict: bool = True, | |
| ): | |
| if attention_kwargs is not None: | |
| attention_kwargs = attention_kwargs.copy() | |
| lora_scale = attention_kwargs.pop("scale", 1.0) | |
| else: | |
| lora_scale = 1.0 | |
| if USE_PEFT_BACKEND: | |
| # weight the lora layers by setting `lora_scale` for each PEFT layer | |
| scale_lora_layers(self, lora_scale) | |
| else: | |
| if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: | |
| logger.warning( | |
| "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." | |
| ) | |
| # 1. Time embedding | |
| timesteps = timestep | |
| t_emb = self.time_proj(timesteps) | |
| # timesteps does not contain any weights and will always return f32 tensors | |
| # but time_embedding might actually be running in fp16. so we need to cast here. | |
| # there might be better ways to encapsulate this. | |
| t_emb = t_emb.to(dtype=full_seq.dtype) | |
| emb = self.time_embedding(t_emb, timestep_cond) | |
| if self.ofs_embedding is not None: | |
| ofs_emb = self.ofs_proj(ofs) | |
| ofs_emb = ofs_emb.to(dtype=full_seq.dtype) | |
| ofs_emb = self.ofs_embedding(ofs_emb) | |
| emb = emb + ofs_emb | |
| # 2. Patch embedding | |
| pos_embedding = self.pos_embedding | |
| pos_embedding = pos_embedding.to(dtype=full_seq.dtype) | |
| hidden_states = full_seq + pos_embedding | |
| hidden_states = self.embedding_dropout(hidden_states) | |
| encoder_hidden_states = hidden_states[:, :self.cond_seq_length] | |
| hidden_states = hidden_states[:, self.cond_seq_length:] | |
| # 3. Transformer blocks | |
| for i, block in enumerate(self.transformer_blocks): | |
| if torch.is_grad_enabled() and self.gradient_checkpointing: | |
| def create_custom_forward(module): | |
| def custom_forward(*inputs): | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| hidden_states, encoder_hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| encoder_hidden_states, | |
| emb, | |
| image_rotary_emb, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| hidden_states, encoder_hidden_states = block( | |
| hidden_states=hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| temb=emb, | |
| image_rotary_emb=image_rotary_emb, | |
| ) | |
| # 4. Final block | |
| hidden_states = self.norm_final(hidden_states) | |
| hidden_states = self.norm_out(hidden_states, temb=emb) | |
| output = self.proj_out(hidden_states) | |
| if USE_PEFT_BACKEND: | |
| # remove `lora_scale` from each PEFT layer | |
| unscale_lora_layers(self, lora_scale) | |
| return output |