Spaces:
Running
on
Zero
Running
on
Zero
| import argparse | |
| import itertools | |
| import json | |
| import logging | |
| import math | |
| import os | |
| import random | |
| import shutil | |
| import warnings | |
| from pathlib import Path | |
| from omegaconf import OmegaConf | |
| from options import TrainingConfig | |
| import numpy as np | |
| import safetensors | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint | |
| import transformers | |
| from accelerate import Accelerator | |
| from accelerate.logging import get_logger | |
| from accelerate.utils import ProjectConfiguration, set_seed | |
| from huggingface_hub import HfApi, create_repo | |
| from huggingface_hub.utils import insecure_hashlib | |
| from packaging import version | |
| from PIL import Image | |
| from torch.utils.data import Dataset | |
| from torchvision import transforms | |
| from tqdm.auto import tqdm | |
| from torchvision import transforms | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKL, DDPMScheduler, DDPMPipeline, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, UNet2DConditionModel, UNet2DModel | |
| ) | |
| from diffusers.loaders import AttnProcsLayers | |
| from diffusers.optimization import get_scheduler | |
| from diffusers.utils import check_min_version, is_wandb_available, make_image_grid | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.optimization import get_cosine_schedule_with_warmup | |
| from pipeline_traj import TrajPipeline | |
| from accelerate.utils import DistributedDataParallelKwargs | |
| from model.spacetime import MDM_ST | |
| from dataset.traj_dataset import TrajDataset | |
| from utils.visualization import save_pointcloud_video, save_pointcloud_json, save_threejs_html | |
| from utils.physics import loss_momentum | |
| from utils.physics import DeformLoss | |
| logger = get_logger(__name__) | |
| def seed_everything(seed): | |
| random.seed(seed) | |
| os.environ['PYTHONHASHSEED'] = str(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed_all(seed) | |
| torch.backends.cudnn.deterministic = True | |
| torch.backends.cudnn.benchmark = False | |
| def main(args): | |
| vis_dir = os.path.join(args.output_dir, args.vis_dir) | |
| logging_dir = Path(args.output_dir, args.logging_dir) | |
| accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir) | |
| kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) | |
| accelerator = Accelerator( | |
| gradient_accumulation_steps=args.gradient_accumulation_steps, | |
| mixed_precision=args.mixed_precision, | |
| log_with=args.report_to, | |
| project_config=accelerator_project_config, | |
| # kwargs_handlers=[kwargs] | |
| ) | |
| # Disable AMP for MPS. | |
| if torch.backends.mps.is_available(): | |
| accelerator.native_amp = False | |
| if args.report_to == "wandb": | |
| if not is_wandb_available(): | |
| raise ImportError("Make sure to install wandb if you want to use it for logging during training.") | |
| import wandb | |
| logging.basicConfig( | |
| format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
| datefmt="%m/%d/%Y %H:%M:%S", | |
| level=logging.INFO, | |
| ) | |
| logger.info(accelerator.state, main_process_only=False) | |
| if accelerator.is_local_main_process: | |
| transformers.utils.logging.set_verbosity_warning() | |
| diffusers.utils.logging.set_verbosity_info() | |
| else: | |
| transformers.utils.logging.set_verbosity_error() | |
| diffusers.utils.logging.set_verbosity_error() | |
| # We need to initialize the trackers we use, and also store our configuration. | |
| # The trackers initializes automatically on the main process. | |
| if accelerator.is_main_process: | |
| tracker_config = {} | |
| accelerator.init_trackers(args.tracker_project_name, config=tracker_config) | |
| # If passed along, set the training seed now. | |
| if args.seed is not None: | |
| set_seed(args.seed) | |
| seed_everything(args.seed) | |
| # Handle the repository creation | |
| if accelerator.is_main_process: | |
| if args.output_dir is not None: | |
| os.makedirs(args.output_dir, exist_ok=True) | |
| os.makedirs(vis_dir, exist_ok=True) | |
| OmegaConf.save(cfg, os.path.join(cfg.output_dir, 'config.yaml')) | |
| src_snapshot_folder = os.path.join(cfg.output_dir, 'src') | |
| ignore_func = lambda d, files: [f for f in files if f.endswith('__pycache__')] | |
| for folder in ['model', 'dataset']: | |
| dst_dir = os.path.join(src_snapshot_folder, folder) | |
| shutil.copytree(folder, dst_dir, ignore=ignore_func, dirs_exist_ok=True) | |
| shutil.copy(os.path.abspath(__file__), os.path.join(cfg.output_dir, 'src', 'train.py')) | |
| if args.push_to_hub: | |
| repo_id = create_repo( | |
| repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token | |
| ).repo_id | |
| # For mixed precision training we cast the text_encoder and vae weights to half-precision | |
| # as these models are only used for inference, keeping weights in full precision is not required. | |
| weight_dtype = torch.float32 | |
| if accelerator.mixed_precision == "fp16": | |
| weight_dtype = torch.float16 | |
| elif accelerator.mixed_precision == "bf16": | |
| weight_dtype = torch.bfloat16 | |
| model = MDM_ST(args.pc_size, args.train_dataset.n_training_frames, n_feats=3, model_config=args.model_config) | |
| # if args.gradient_checkpointing: | |
| # model.enable_gradient_checkpointing() | |
| # Enable TF32 for faster training on Ampere GPUs, | |
| # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices | |
| if args.allow_tf32: | |
| torch.backends.cuda.matmul.allow_tf32 = True | |
| if args.scale_lr: | |
| args.learning_rate = ( | |
| args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes | |
| ) | |
| # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs | |
| if args.use_8bit_adam: | |
| try: | |
| import bitsandbytes as bnb | |
| except ImportError: | |
| raise ImportError( | |
| "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`." | |
| ) | |
| optimizer_class = bnb.optim.AdamW8bit | |
| else: | |
| optimizer_class = torch.optim.AdamW | |
| params = model.parameters() | |
| # Optimizer creation | |
| optimizer = optimizer_class( | |
| [ | |
| {"params": params, "lr": args.learning_rate}, | |
| ], | |
| betas=(args.adam_beta1, args.adam_beta2), | |
| weight_decay=args.adam_weight_decay, | |
| eps=args.adam_epsilon, | |
| ) | |
| # if args.model_type == 'dit_st_water': | |
| # from dataset.water_dataset import TrajDataset | |
| # Dataset and DataLoaders creation: | |
| train_dataset = TrajDataset('train', args.train_dataset) | |
| train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers, pin_memory=True) | |
| val_dataset = TrajDataset('val', args.train_dataset) | |
| val_dataloader = torch.utils.data.DataLoader(val_dataset, batch_size=args.eval_batch_size, shuffle=False, num_workers=args.dataloader_num_workers) | |
| # noise = torch.randn(sample_image.shape) | |
| # timesteps = torch.LongTensor([50]) | |
| # noisy_image = noise_scheduler.add_noise(sample_image, noise, timesteps) | |
| # Image.fromarray(((noisy_image.permute(0, 2, 3, 1) + 1.0) * 127.5).type(torch.uint8).numpy()[0]) | |
| # Scheduler and math around the number of training steps. | |
| # Check the PR https://github.com/huggingface/diffusers/pull/8312 for detailed explanation. | |
| num_warmup_steps_for_scheduler = args.lr_warmup_steps * accelerator.num_processes | |
| if args.max_train_steps is None: | |
| len_train_dataloader_after_sharding = math.ceil(len(train_dataloader) / accelerator.num_processes) | |
| num_update_steps_per_epoch = math.ceil(len_train_dataloader_after_sharding / args.gradient_accumulation_steps) | |
| num_training_steps_for_scheduler = ( | |
| args.num_train_epochs * num_update_steps_per_epoch * accelerator.num_processes | |
| ) | |
| else: | |
| num_training_steps_for_scheduler = args.max_train_steps * accelerator.num_processes | |
| lr_scheduler = get_cosine_schedule_with_warmup( | |
| optimizer=optimizer, | |
| num_warmup_steps=num_warmup_steps_for_scheduler, | |
| num_training_steps=num_training_steps_for_scheduler, | |
| ) | |
| model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( | |
| model, optimizer, train_dataloader, lr_scheduler | |
| ) | |
| # We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
| num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) | |
| if args.max_train_steps is None: | |
| args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch | |
| if num_training_steps_for_scheduler != args.max_train_steps * accelerator.num_processes: | |
| logger.warning( | |
| f"The length of the 'train_dataloader' after 'accelerator.prepare' ({len(train_dataloader)}) does not match " | |
| f"the expected length ({len_train_dataloader_after_sharding}) when the learning rate scheduler was created. " | |
| f"This inconsistency may result in the learning rate scheduler not functioning properly." | |
| ) | |
| # Afterwards we recalculate our number of training epochs | |
| args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) | |
| # Train! | |
| total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps | |
| logger.info("***** Running training *****") | |
| logger.info(f" Num of Trainable Parameters (M) = {sum(p.numel() for p in model.parameters()) / 1000000}") | |
| logger.info(f" Num examples = {len(train_dataset)}") | |
| logger.info(f" Num batches each epoch = {len(train_dataloader)}") | |
| logger.info(f" Num Epochs = {args.num_train_epochs}") | |
| logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") | |
| logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
| logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") | |
| logger.info(f" Total optimization steps = {args.max_train_steps}") | |
| logger.info(f" Log to = {args.output_dir}") | |
| global_step = 0 | |
| first_epoch = 0 | |
| # Potentially load in the weights and states from a previous save | |
| if args.resume_from_checkpoint: | |
| if args.resume_from_checkpoint != "latest": | |
| path = os.path.basename(args.resume_from_checkpoint) | |
| else: | |
| # Get the most recent checkpoint | |
| dirs = os.listdir(args.output_dir) | |
| dirs = [d for d in dirs if d.startswith("checkpoint")] | |
| dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) | |
| path = dirs[-1] if len(dirs) > 0 else None | |
| if path is None: | |
| accelerator.print( | |
| f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." | |
| ) | |
| args.resume_from_checkpoint = None | |
| initial_global_step = 0 | |
| else: | |
| accelerator.print(f"Resuming from checkpoint {path}") | |
| accelerator.load_state(os.path.join(args.output_dir, path)) | |
| global_step = int(path.split("-")[1]) | |
| initial_global_step = global_step | |
| first_epoch = global_step // num_update_steps_per_epoch | |
| else: | |
| initial_global_step = 0 | |
| progress_bar = tqdm( | |
| range(0, args.max_train_steps), | |
| initial=initial_global_step, | |
| desc="Steps", | |
| # Only show the progress bar once on each machine. | |
| disable=not accelerator.is_local_main_process, | |
| ) | |
| noise_scheduler = DDPMScheduler(num_train_timesteps=1000, prediction_type='sample', clip_sample=False) | |
| if args.seed is None: | |
| generator = None | |
| else: | |
| generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) | |
| loss_deform = DeformLoss() | |
| for epoch in range(first_epoch, args.num_train_epochs): | |
| model.train() | |
| train_loss = 0.0 | |
| for step, (batch, _) in enumerate(train_dataloader): | |
| with accelerator.accumulate(model): | |
| latents = batch['points_tgt'] # (bsz, n_frames, n_points, 3) | |
| # Sample noise that we'll add to the latents | |
| noise = torch.randn_like(latents) | |
| bsz = latents.shape[0] | |
| # Sample a random timestep for each image | |
| timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device) | |
| timesteps = timesteps.long() | |
| # Add noise to the latents according to the noise magnitude at each timestep | |
| # (this is the forward diffusion process) | |
| noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) | |
| if args.condition_drop_rate > 0: | |
| # Randomly drop some of the latents | |
| random_p = torch.rand(bsz, device=latents.device, generator=generator) | |
| null_emb = (random_p > args.condition_drop_rate).float()[..., None, None] | |
| else: | |
| null_emb = None | |
| # Predict the noise residual | |
| pred_sample = model(noisy_latents, timesteps, batch['points_src'], batch['force'], batch['E'], batch['nu'], batch['mask'][..., :1], batch['drag_point'], batch['floor_height'], batch['gravity'], batch['base_drag_coeff'], y=None if 'mat_type' not in batch else batch['mat_type'], null_emb=null_emb) | |
| losses = {} | |
| loss = F.mse_loss(pred_sample.float(), latents.float()) | |
| losses['xyz'] = loss.detach().item() | |
| if args.lambda_mask > 0: | |
| loss_mask = F.mse_loss(pred_sample[batch['mask']], latents[batch['mask']]) | |
| loss += loss_mask | |
| losses['mask'] = loss_mask.detach().item() | |
| if args.lambda_vel > 0.: | |
| target_vel = latents[:, 1:] - latents[:, :-1] | |
| pred_vel = (pred_sample[:, 1:] - pred_sample[:, :-1]) | |
| loss_vel = F.mse_loss(target_vel.float(), pred_vel.float()) | |
| losses['loss_vel'] = loss_vel.detach().item() | |
| loss = loss + loss_vel | |
| if 'vol' in batch and args.lambda_momentum > 0.: | |
| loss_p = loss_momentum(x=pred_sample, vol=batch['vol'], force=batch['weighted_force'], | |
| drag_pt_num=batch['mask'][:, 0, :].sum(dim=1), norm_fac=args.train_dataset.norm_fac) | |
| losses['loss_p'] = loss_p.detach().item() | |
| loss = loss + args.lambda_momentum * loss_p | |
| if 'vol' in batch and args.lambda_deform > 0.: | |
| pred_sample_mpm = pred_sample | |
| if 'is_mpm' in batch: | |
| mask = batch['is_mpm'] | |
| pred_sample_mpm = pred_sample[mask] | |
| batch['vol'] = batch['vol'][mask] | |
| batch['F'] = batch['F'][mask] | |
| batch['C'] = batch['C'][mask] | |
| loss_F = loss_deform(x=pred_sample_mpm.clamp(min=-2.2, max=2.2), vol=batch['vol'], F=batch['F'], | |
| C=batch['C'], frame_interval=2, norm_fac=args.train_dataset.norm_fac) if batch['vol'].shape[0] > 0 else torch.tensor(0.0, device=pred_sample.device) | |
| losses['loss_deform'] = loss_F.detach().item() | |
| loss = loss + args.lambda_deform * loss_F | |
| if args.model_config.floor_cond: | |
| floor_height = batch['floor_height'].reshape(bsz, 1, 1) # (B, 1, 1) | |
| sample_min_height = torch.amin(latents[..., 1], dim=(1, 2)).reshape(bsz, 1, 1) | |
| floor_height = torch.minimum(floor_height, sample_min_height) | |
| loss_floor = (torch.relu(floor_height - pred_sample[..., 1]) ** 2).mean() | |
| losses['loss_floor'] = loss_floor.detach().item() | |
| loss += loss_floor | |
| # Gather the losses across all processes for logging (if we use distributed training). | |
| avg_loss = accelerator.gather(loss.repeat(cfg.train_batch_size)).mean() | |
| train_loss += avg_loss.item() / cfg.gradient_accumulation_steps | |
| accelerator.backward(loss) | |
| if accelerator.sync_gradients: | |
| accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
| optimizer.step() | |
| lr_scheduler.step() | |
| optimizer.zero_grad() | |
| # Checks if the accelerator has performed an optimization step behind the scenes | |
| if accelerator.sync_gradients: | |
| progress_bar.update(1) | |
| global_step += 1 | |
| train_loss = 0.0 | |
| if global_step % args.checkpointing_steps == 0: | |
| if accelerator.is_main_process: | |
| # _before_ saving state, check if this save would set us over the `checkpoints_total_limit` | |
| if args.checkpoints_total_limit is not None: | |
| checkpoints = os.listdir(args.output_dir) | |
| checkpoints = [d for d in checkpoints if d.startswith("checkpoint")] | |
| checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1])) | |
| # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints | |
| if len(checkpoints) >= args.checkpoints_total_limit: | |
| num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1 | |
| removing_checkpoints = checkpoints[0:num_to_remove] | |
| logger.info( | |
| f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints" | |
| ) | |
| logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}") | |
| for removing_checkpoint in removing_checkpoints: | |
| removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint) | |
| shutil.rmtree(removing_checkpoint) | |
| save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") | |
| accelerator.save_state(save_path) | |
| logger.info(f"Saved state to {save_path}") | |
| if global_step % cfg.validation_steps == 0 or global_step == 1: | |
| if accelerator.is_main_process: | |
| model.eval() | |
| pipeline = TrajPipeline(model=accelerator.unwrap_model(model), scheduler=DDIMScheduler.from_config(noise_scheduler.config)) | |
| logger.info( | |
| f"Running validation... \n." | |
| ) | |
| for i, (batch, _) in enumerate(val_dataloader): | |
| with torch.autocast("cuda"): | |
| gs = [1.0] if args.condition_drop_rate == 0 else [1.0, 2.0, 3.0] | |
| for guidance_scale in gs: | |
| output = pipeline(batch['points_src'], batch['force'], batch['E'], batch['nu'], batch['mask'][..., :1], batch['drag_point'], batch['floor_height'], batch['gravity'], batch['base_drag_coeff'], y=None if 'mat_type' not in batch else batch['mat_type'], device=accelerator.device, batch_size=args.eval_batch_size, generator=torch.Generator().manual_seed(args.seed), n_frames=args.train_dataset.n_training_frames, guidance_scale=guidance_scale) | |
| output = output.cpu().numpy() | |
| tgt = batch['points_tgt'].cpu().numpy() | |
| save_dir = os.path.join(vis_dir, f'{global_step:06d}') | |
| os.makedirs(save_dir, exist_ok=True) | |
| for j in range(output.shape[0]): | |
| save_pointcloud_video(output[j:j+1].squeeze(), tgt[j:j+1].squeeze(), os.path.join(save_dir, f'{i*batch["points_src"].shape[0] + j}_{guidance_scale}.gif'), | |
| drag_mask=batch['mask'][j:j+1, 0, :, 0].cpu().numpy().squeeze(), vis_flag=args.train_dataset.dataset_path) | |
| # pred_name = f'{i*batch["points_src"].shape[0]+j}_pred.json' | |
| # gt_name = f'{i*batch["points_src"].shape[0]+j}_gt.json' | |
| # save_pointcloud_json(output[j:j+1].squeeze(), os.path.join(save_dir, pred_name)) | |
| # save_pointcloud_json(tgt[j:j+1].squeeze(), os.path.join(save_dir, gt_name)) | |
| # save_threejs_html(pred_name, gt_name, os.path.join(save_dir, f'{j}.html')) | |
| torch.cuda.empty_cache() | |
| model.train() | |
| logs = losses | |
| logs.update({"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}) | |
| progress_bar.set_postfix(**logs) | |
| accelerator.log(logs, step=global_step) | |
| if global_step >= args.max_train_steps: | |
| break | |
| # Save the custom diffusion layers | |
| accelerator.wait_for_everyone() | |
| # if accelerator.is_main_process: | |
| # unet = unet.to(torch.float32) | |
| accelerator.end_training() | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--config', type=str, required=True) | |
| args = parser.parse_args() | |
| schema = OmegaConf.structured(TrainingConfig) | |
| cfg = OmegaConf.load(args.config) | |
| cfg = OmegaConf.merge(schema, cfg) | |
| main(cfg) |