Spaces:
Running
Running
File size: 6,043 Bytes
d50ca82 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import os
import random
import torch
import diffusers
import gradio as gr
# 关键:导入 sdnq,用于注册 SDNQ 量化算子,否则会报
# “QuantizationMethod.SDNQ is not available yet” 之类的错误
from sdnq import SDNQConfig # noqa: F401 # 仅用于 side-effect 注册
# -------------------------
# 1. 全局加载 Z-Image-Turbo SDNQ 4bit 管线
# -------------------------
MODEL_ID = "Disty0/Z-Image-Turbo-SDNQ-uint4-svd-r32"
def load_pipeline():
"""
加载 Z-Image-Turbo 4bit SDNQ 模型。
优先使用 bfloat16(与模型卡保持一致),
若在某些 CPU 环境下不支持,则回退到 float32。
"""
dtype = torch.bfloat16
try:
print(f"Try loading pipeline with dtype={dtype} ...")
pipe = diffusers.ZImagePipeline.from_pretrained(
MODEL_ID,
torch_dtype=dtype,
)
except Exception as e:
print(f"bfloat16 加载失败,回退到 float32: {e}")
pipe = diffusers.ZImagePipeline.from_pretrained(
MODEL_ID,
torch_dtype=torch.float32,
)
# 在低显存 / CPU 环境下,官方推荐开启 CPU offload
# 对纯 CPU Space 也兼容,只是会多一层模块管理
try:
pipe.enable_model_cpu_offload()
except Exception as e:
# 某些环境(老版 accelerate)可能没有该方法,忽略即可
print(f"enable_model_cpu_offload 失败,直接使用 CPU: {e}")
return pipe
pipe = load_pipeline()
# -------------------------
# 2. 推理函数(Gradio 回调)
# -------------------------
def generate_image(
prompt: str,
height: int = 768,
width: int = 768,
num_inference_steps: int = 9,
guidance_scale: float = 0.0,
seed: int | None = 0,
randomize_seed: bool = True,
):
"""
使用 Z-Image-Turbo-SDNQ 生成单张图片。
参数说明:
- prompt: 文本提示词
- height / width: 图像分辨率,建议 CPU 空间下 512 或 768 起步
- num_inference_steps: 采样步数,Z-Image-Turbo 一般 6~10 步即可
- guidance_scale: CFG scale,官方推荐 0.0(关闭 CFG)
- seed: 随机种子,便于复现
- randomize_seed: 是否自动随机 seed(方便连点出图)
"""
if not prompt or prompt.strip() == "":
raise gr.Error("提示词不能为空,请输入 prompt。")
# 处理 seed
if randomize_seed or seed is None or seed < 0:
seed = random.randint(0, 2**31 - 1)
# Z-Image-Turbo 对 1024×1024 表现最好
# 但在 CPU Space 中性能会较慢,建议从 768×768 起
generator = torch.Generator(device="cpu").manual_seed(seed)
image = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator,
).images[0]
return image, seed
# -------------------------
# 3. Gradio UI 定义
# -------------------------
with gr.Blocks(title="Z-Image-Turbo SDNQ 4bit (CPU Friendly)") as demo:
gr.Markdown(
"""
# Z-Image-Turbo SDNQ 4bit (CPU / 低显存友好)
基于 **Disty0/Z-Image-Turbo-SDNQ-uint4-svd-r32** 的 Gradio Demo。
可部署在 Hugging Face **CPU Space** 中运行(仅 CPU,也能出图,但会较慢)。
- 模型:Z-Image-Turbo 6B(4bit SDNQ 量化)
- 推荐:先从 512 或 768 分辨率开始,步数 6~10 步
- 提示:完全在 CPU 上运行时,生成一张 768×768 可能需要数十秒甚至更久
"""
)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(
label="提示词 Prompt",
placeholder="例如:a photo of a beautiful Chinese city at night, neon lights, high detail, 4k",
lines=4,
)
with gr.Row():
height = gr.Slider(
label="高度 Height",
minimum=256,
maximum=1024,
step=64,
value=768,
)
width = gr.Slider(
label="宽度 Width",
minimum=256,
maximum=1024,
step=64,
value=768,
)
with gr.Row():
steps = gr.Slider(
label="采样步数 num_inference_steps",
minimum=4,
maximum=20,
step=1,
value=9,
)
guidance = gr.Slider(
label="CFG Scale (guidance_scale)",
minimum=0.0,
maximum=3.0,
step=0.1,
value=0.0,
)
with gr.Row():
seed = gr.Number(
label="随机种子 Seed(<0 或留空=自动随机)",
value=0,
precision=0,
)
randomize_seed = gr.Checkbox(
label="每次自动随机 Seed",
value=True,
)
generate_btn = gr.Button("生成图片 Generate", variant="primary")
with gr.Column(scale=2):
output_image = gr.Image(
label="生成结果",
type="pil",
format="png",
)
used_seed = gr.Number(
label="实际使用的 Seed(方便复现)",
value=0,
precision=0,
interactive=False,
)
# 绑定事件
generate_btn.click(
fn=generate_image,
inputs=[prompt, height, width, steps, guidance, seed, randomize_seed],
outputs=[output_image, used_seed],
)
# Hugging Face Space & 本地运行入口
if __name__ == "__main__":
# 本地调试时可直接运行:python app.py
demo.launch(server_name="0.0.0.0", server_port=int(os.getenv("PORT", 7860)))
|