Update app.py
Browse files
app.py
CHANGED
|
@@ -2,7 +2,6 @@ import torch
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import gradio as gr
|
| 4 |
import requests
|
| 5 |
-
from IPython.display import display, Image
|
| 6 |
|
| 7 |
model_name = "Writer/palmyra-small"
|
| 8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
@@ -44,12 +43,12 @@ def get_movie_info(movie_title):
|
|
| 44 |
year = details_data.get("release_date", "Unknown Year")[:4]
|
| 45 |
genre = ", ".join(genre["name"] for genre in details_data.get("genres", []))
|
| 46 |
tmdb_link = f"https://www.themoviedb.org/movie/{movie_id}"
|
| 47 |
-
poster_path = details_data.get("poster_path")
|
| 48 |
|
| 49 |
# Convert poster_path to a complete image URL
|
| 50 |
-
image_url = f"https://image.tmdb.org/t/p/w500{poster_path}" if poster_path else ""
|
| 51 |
|
| 52 |
-
return f"Title: {title}, Year: {year}, Genre: {genre}\nFind more info here: {tmdb_link}"
|
| 53 |
|
| 54 |
else:
|
| 55 |
return "Movie not found", ""
|
|
@@ -66,7 +65,7 @@ def generate_response(prompt):
|
|
| 66 |
)
|
| 67 |
|
| 68 |
# Call the get_movie_info function to enrich the response
|
| 69 |
-
movie_info
|
| 70 |
|
| 71 |
# Concatenate the movie info with the input template
|
| 72 |
input_text_template += f" Movie Info: {movie_info}"
|
|
@@ -85,10 +84,10 @@ def generate_response(prompt):
|
|
| 85 |
|
| 86 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 87 |
|
| 88 |
-
#
|
| 89 |
-
|
| 90 |
|
| 91 |
-
return f"Movie Info:\n{movie_info}\n\nGenerated Response:\n{generated_text}"
|
| 92 |
|
| 93 |
# Define chat function for gr.ChatInterface
|
| 94 |
def chat_function(message, history):
|
|
@@ -100,3 +99,4 @@ def chat_function(message, history):
|
|
| 100 |
chat_interface = gr.ChatInterface(chat_function)
|
| 101 |
chat_interface.launch(share=True) # Added share=True to create a public link
|
| 102 |
|
|
|
|
|
|
| 2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import gradio as gr
|
| 4 |
import requests
|
|
|
|
| 5 |
|
| 6 |
model_name = "Writer/palmyra-small"
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
| 43 |
year = details_data.get("release_date", "Unknown Year")[:4]
|
| 44 |
genre = ", ".join(genre["name"] for genre in details_data.get("genres", []))
|
| 45 |
tmdb_link = f"https://www.themoviedb.org/movie/{movie_id}"
|
| 46 |
+
# poster_path = details_data.get("poster_path")
|
| 47 |
|
| 48 |
# Convert poster_path to a complete image URL
|
| 49 |
+
# image_url = f"https://image.tmdb.org/t/p/w500{poster_path}" if poster_path else ""
|
| 50 |
|
| 51 |
+
return f"Title: {title}, Year: {year}, Genre: {genre}\nFind more info here: {tmdb_link}"
|
| 52 |
|
| 53 |
else:
|
| 54 |
return "Movie not found", ""
|
|
|
|
| 65 |
)
|
| 66 |
|
| 67 |
# Call the get_movie_info function to enrich the response
|
| 68 |
+
movie_info = get_movie_info(prompt)
|
| 69 |
|
| 70 |
# Concatenate the movie info with the input template
|
| 71 |
input_text_template += f" Movie Info: {movie_info}"
|
|
|
|
| 84 |
|
| 85 |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 86 |
|
| 87 |
+
# Display image directly in the chat
|
| 88 |
+
# image_component = gr.Image(image_url)
|
| 89 |
|
| 90 |
+
return f"Movie Info:\n{movie_info}\n\nGenerated Response:\n{generated_text}\n"
|
| 91 |
|
| 92 |
# Define chat function for gr.ChatInterface
|
| 93 |
def chat_function(message, history):
|
|
|
|
| 99 |
chat_interface = gr.ChatInterface(chat_function)
|
| 100 |
chat_interface.launch(share=True) # Added share=True to create a public link
|
| 101 |
|
| 102 |
+
|