Spaces:
Build error
Build error
File size: 5,803 Bytes
367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 367770c 54d8ff9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
"""
Infinigen Agents - AI-powered procedural 3D generation
Full version with Infinigen + Blender in Docker container
"""
import os
import sys
import gradio as gr
from typing import Dict, Any
from pathlib import Path
# Add infinigen to path (in Docker container)
sys.path.insert(0, "/app")
sys.path.insert(0, "/app/infinigen")
# HuggingFace token from Space secrets
HF_TOKEN = os.environ.get("HF_TOKEN")
# AI Model Configuration
AI_MODEL = os.environ.get("AI_MODEL", "huggingface")
HF_MODEL_ID = os.environ.get("HF_MODEL_ID", "openai/gpt-oss-20b")
HF_PROVIDER = os.environ.get("HF_PROVIDER", None)
def get_model():
"""Get configured AI model for agents."""
if AI_MODEL == "huggingface":
from pydantic_ai.models.huggingface import HuggingFaceModel
from pydantic_ai.providers.huggingface import HuggingFaceProvider
provider_kwargs = {"api_key": HF_TOKEN}
if HF_PROVIDER:
provider_kwargs["provider_name"] = HF_PROVIDER
return HuggingFaceModel(HF_MODEL_ID, provider=HuggingFaceProvider(**provider_kwargs))
else:
return f"openai:gpt-4o-mini"
def compose_scene(scene_type: str, seed: int, complexity: str) -> Dict[str, Any]:
"""Compose a scene using AI agent."""
try:
from pydantic_ai import Agent
agent = Agent(
get_model(),
system_prompt=f"""You are a scene composer for Infinigen.
Create a {complexity} complexity {scene_type} scene with seed {seed}.
Respond with JSON containing: scene_type, seed, assets, lighting, camera."""
)
result = agent.run_sync(f"Create a {scene_type} scene")
return {
"success": True,
"scene_type": scene_type,
"seed": seed,
"complexity": complexity,
"result": str(result.data)
}
except Exception as e:
return {"success": False, "error": str(e)}
def generate_terrain(terrain_type: str, seed: int, resolution: int) -> Dict[str, Any]:
"""Generate terrain using AI agent."""
try:
from pydantic_ai import Agent
agent = Agent(
get_model(),
system_prompt=f"""You are a terrain engineer for Infinigen.
Generate {terrain_type} terrain with resolution {resolution}.
Respond with terrain parameters: heightmap settings, erosion, materials."""
)
result = agent.run_sync(f"Generate {terrain_type} terrain")
return {
"success": True,
"terrain_type": terrain_type,
"seed": seed,
"resolution": resolution,
"result": str(result.data)
}
except Exception as e:
return {"success": False, "error": str(e)}
def get_recommendations(scene_type: str) -> str:
"""Get AI recommendations for scene generation."""
try:
from pydantic_ai import Agent
agent = Agent(
get_model(),
system_prompt="""You are an expert on Infinigen procedural generation.
Provide recommendations for assets, terrain, lighting, and camera setup."""
)
result = agent.run_sync(f"Recommend settings for a {scene_type} scene in Infinigen")
return str(result.data)
except Exception as e:
return f"Error: {e}"
# Gradio Interface
with gr.Blocks(title="Infinigen Agents") as demo:
gr.Markdown("""
# π Infinigen Agents
**AI-powered procedural 3D world generation**
Full version with Infinigen + Blender - Using HuggingFace Inference API
""")
with gr.Tab("Scene Composer"):
with gr.Row():
scene_type = gr.Dropdown(
["forest", "desert", "mountain", "canyon", "coast", "kitchen", "living_room"],
label="Scene Type",
value="forest"
)
scene_seed = gr.Number(label="Seed", value=42)
complexity = gr.Dropdown(["low", "medium", "high"], label="Complexity", value="medium")
compose_btn = gr.Button("π¬ Compose Scene", variant="primary")
scene_output = gr.JSON(label="Scene Result")
compose_btn.click(compose_scene, [scene_type, scene_seed, complexity], scene_output)
with gr.Tab("Terrain Engineer"):
with gr.Row():
terrain_type = gr.Dropdown(
["mountain", "canyon", "cliff", "mesa", "river", "volcano", "coast", "plain"],
label="Terrain Type",
value="mountain"
)
terrain_seed = gr.Number(label="Seed", value=42)
resolution = gr.Slider(128, 2048, value=512, step=128, label="Resolution")
terrain_btn = gr.Button("ποΈ Generate Terrain", variant="primary")
terrain_output = gr.JSON(label="Terrain Result")
terrain_btn.click(generate_terrain, [terrain_type, terrain_seed, resolution], terrain_output)
with gr.Tab("AI Recommendations"):
rec_scene_type = gr.Dropdown(
["forest", "desert", "mountain", "canyon", "coast"],
label="Scene Type",
value="forest"
)
rec_btn = gr.Button("π‘ Get Recommendations", variant="primary")
rec_output = gr.Textbox(label="AI Recommendations", lines=10)
rec_btn.click(get_recommendations, rec_scene_type, rec_output)
gr.Markdown(f"""
---
### Configuration
- **AI Model**: {AI_MODEL}
- **HF Model**: {HF_MODEL_ID}
- **Provider**: {HF_PROVIDER or 'auto'}
### MCP Server
```json
{{
"mcpServers": {{
"infinigen-agents": {{
"url": "https://dev-bjoern-infinigen-agents.hf.space/gradio_api/mcp/sse"
}}
}}
}}
```
""")
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860, mcp_server=True)
|