File size: 5,803 Bytes
367770c
 
54d8ff9
367770c
 
54d8ff9
367770c
 
54d8ff9
 
 
 
 
367770c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d8ff9
367770c
 
 
54d8ff9
367770c
 
 
 
 
 
 
 
 
54d8ff9
367770c
 
 
 
 
 
54d8ff9
367770c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d8ff9
367770c
 
 
 
 
 
54d8ff9
367770c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54d8ff9
367770c
 
 
 
 
54d8ff9
367770c
 
 
 
 
 
 
 
 
 
 
54d8ff9
 
367770c
54d8ff9
367770c
 
 
 
 
 
 
 
 
54d8ff9
367770c
 
54d8ff9
367770c
54d8ff9
367770c
 
 
 
 
 
 
 
 
54d8ff9
367770c
 
54d8ff9
367770c
54d8ff9
367770c
 
 
 
 
 
 
 
54d8ff9
367770c
54d8ff9
367770c
 
 
 
 
 
54d8ff9
367770c
 
 
 
 
 
 
 
 
 
 
 
 
 
54d8ff9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
"""
Infinigen Agents - AI-powered procedural 3D generation
Full version with Infinigen + Blender in Docker container
"""
import os
import sys
import gradio as gr
from typing import Dict, Any
from pathlib import Path

# Add infinigen to path (in Docker container)
sys.path.insert(0, "/app")
sys.path.insert(0, "/app/infinigen")

# HuggingFace token from Space secrets
HF_TOKEN = os.environ.get("HF_TOKEN")

# AI Model Configuration
AI_MODEL = os.environ.get("AI_MODEL", "huggingface")
HF_MODEL_ID = os.environ.get("HF_MODEL_ID", "openai/gpt-oss-20b")
HF_PROVIDER = os.environ.get("HF_PROVIDER", None)


def get_model():
    """Get configured AI model for agents."""
    if AI_MODEL == "huggingface":
        from pydantic_ai.models.huggingface import HuggingFaceModel
        from pydantic_ai.providers.huggingface import HuggingFaceProvider

        provider_kwargs = {"api_key": HF_TOKEN}
        if HF_PROVIDER:
            provider_kwargs["provider_name"] = HF_PROVIDER

        return HuggingFaceModel(HF_MODEL_ID, provider=HuggingFaceProvider(**provider_kwargs))
    else:
        return f"openai:gpt-4o-mini"


def compose_scene(scene_type: str, seed: int, complexity: str) -> Dict[str, Any]:
    """Compose a scene using AI agent."""
    try:
        from pydantic_ai import Agent

        agent = Agent(
            get_model(),
            system_prompt=f"""You are a scene composer for Infinigen.
            Create a {complexity} complexity {scene_type} scene with seed {seed}.
            Respond with JSON containing: scene_type, seed, assets, lighting, camera."""
        )

        result = agent.run_sync(f"Create a {scene_type} scene")
        return {
            "success": True,
            "scene_type": scene_type,
            "seed": seed,
            "complexity": complexity,
            "result": str(result.data)
        }
    except Exception as e:
        return {"success": False, "error": str(e)}


def generate_terrain(terrain_type: str, seed: int, resolution: int) -> Dict[str, Any]:
    """Generate terrain using AI agent."""
    try:
        from pydantic_ai import Agent

        agent = Agent(
            get_model(),
            system_prompt=f"""You are a terrain engineer for Infinigen.
            Generate {terrain_type} terrain with resolution {resolution}.
            Respond with terrain parameters: heightmap settings, erosion, materials."""
        )

        result = agent.run_sync(f"Generate {terrain_type} terrain")
        return {
            "success": True,
            "terrain_type": terrain_type,
            "seed": seed,
            "resolution": resolution,
            "result": str(result.data)
        }
    except Exception as e:
        return {"success": False, "error": str(e)}


def get_recommendations(scene_type: str) -> str:
    """Get AI recommendations for scene generation."""
    try:
        from pydantic_ai import Agent

        agent = Agent(
            get_model(),
            system_prompt="""You are an expert on Infinigen procedural generation.
            Provide recommendations for assets, terrain, lighting, and camera setup."""
        )

        result = agent.run_sync(f"Recommend settings for a {scene_type} scene in Infinigen")
        return str(result.data)
    except Exception as e:
        return f"Error: {e}"


# Gradio Interface
with gr.Blocks(title="Infinigen Agents") as demo:
    gr.Markdown("""
    # 🌍 Infinigen Agents
    **AI-powered procedural 3D world generation**

    Full version with Infinigen + Blender - Using HuggingFace Inference API
    """)

    with gr.Tab("Scene Composer"):
        with gr.Row():
            scene_type = gr.Dropdown(
                ["forest", "desert", "mountain", "canyon", "coast", "kitchen", "living_room"],
                label="Scene Type",
                value="forest"
            )
            scene_seed = gr.Number(label="Seed", value=42)
            complexity = gr.Dropdown(["low", "medium", "high"], label="Complexity", value="medium")

        compose_btn = gr.Button("🎬 Compose Scene", variant="primary")
        scene_output = gr.JSON(label="Scene Result")

        compose_btn.click(compose_scene, [scene_type, scene_seed, complexity], scene_output)

    with gr.Tab("Terrain Engineer"):
        with gr.Row():
            terrain_type = gr.Dropdown(
                ["mountain", "canyon", "cliff", "mesa", "river", "volcano", "coast", "plain"],
                label="Terrain Type",
                value="mountain"
            )
            terrain_seed = gr.Number(label="Seed", value=42)
            resolution = gr.Slider(128, 2048, value=512, step=128, label="Resolution")

        terrain_btn = gr.Button("πŸ”οΈ Generate Terrain", variant="primary")
        terrain_output = gr.JSON(label="Terrain Result")

        terrain_btn.click(generate_terrain, [terrain_type, terrain_seed, resolution], terrain_output)

    with gr.Tab("AI Recommendations"):
        rec_scene_type = gr.Dropdown(
            ["forest", "desert", "mountain", "canyon", "coast"],
            label="Scene Type",
            value="forest"
        )
        rec_btn = gr.Button("πŸ’‘ Get Recommendations", variant="primary")
        rec_output = gr.Textbox(label="AI Recommendations", lines=10)

        rec_btn.click(get_recommendations, rec_scene_type, rec_output)

    gr.Markdown(f"""
    ---
    ### Configuration
    - **AI Model**: {AI_MODEL}
    - **HF Model**: {HF_MODEL_ID}
    - **Provider**: {HF_PROVIDER or 'auto'}

    ### MCP Server
    ```json
    {{
      "mcpServers": {{
        "infinigen-agents": {{
          "url": "https://dev-bjoern-infinigen-agents.hf.space/gradio_api/mcp/sse"
        }}
      }}
    }}
    ```
    """)


if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, mcp_server=True)