import numpy as np import pickle as pkl import tensorflow as tf from tensorflow.keras.applications.resnet50 import ResNet50,preprocess_input from tensorflow.keras.preprocessing import image from tensorflow.keras.layers import GlobalMaxPool2D from sklearn.neighbors import NearestNeighbors import os from numpy.linalg import norm import streamlit as st st.header('Fashion Recommendation System') Image_features = pkl.load(open('featurevector.pkl','rb')) filenames = pkl.load(open('filename.pkl','rb')) def extract_features_from_images(image_path, model): img = image.load_img(image_path, target_size=(224,224)) img_array = image.img_to_array(img) img_expand_dim = np.expand_dims(img_array, axis=0) img_preprocess = preprocess_input(img_expand_dim) result = model.predict(img_preprocess).flatten() norm_result = result/norm(result) return norm_result model = ResNet50(weights='imagenet', include_top=False, input_shape=(224,224,3)) model.trainable = False model = tf.keras.models.Sequential([model, GlobalMaxPool2D() ]) neighbors = NearestNeighbors(n_neighbors=6, algorithm='brute', metric='euclidean') neighbors.fit(Image_features) upload_file = st.file_uploader("Upload Image") if upload_file is not None: with open(os.path.join('upload', upload_file.name), 'wb') as f: f.write(upload_file.getbuffer()) st.subheader('Uploaded Image') st.image(upload_file) input_img_features = extract_features_from_images(upload_file, model) distance,indices = neighbors.kneighbors([input_img_features]) st.subheader('Recommended Images') col1,col2,col3,col4,col5 = st.columns(5) with col1: st.image(filenames[indices[0][1]]) with col2: st.image(filenames[indices[0][2]]) with col3: st.image(filenames[indices[0][3]]) with col4: st.image(filenames[indices[0][4]]) with col5: st.image(filenames[indices[0][5]])