Spaces:
Sleeping
Sleeping
| # app.py | |
| import os | |
| import pandas as pd | |
| import gradio as gr | |
| import comtradeapicall | |
| from openai import OpenAI | |
| from deep_translator import GoogleTranslator | |
| import spaces # برای مدیریت GPU کرایهای | |
| # --- بارگذاری دادههای HS Code --- | |
| HS_CSV_URL = ( | |
| "https://raw.githubusercontent.com/" | |
| "datasets/harmonized-system/master/data/harmonized-system.csv" | |
| ) | |
| hs_df = pd.read_csv(HS_CSV_URL, dtype=str) | |
| def get_product_name(hs_code: str) -> str: | |
| code4 = str(hs_code).zfill(4) | |
| row = hs_df[hs_df["hscode"] == code4] | |
| return row.iloc[0]["description"] if not row.empty else "–" | |
| def get_importers(hs_code: str, year: str, month: str): | |
| product_name = get_product_name(hs_code) | |
| period = f"{year}{int(month):02d}" | |
| df = comtradeapicall.previewFinalData( | |
| typeCode='C', freqCode='M', clCode='HS', period=period, | |
| reporterCode=None, cmdCode=hs_code, flowCode='M', | |
| partnerCode=None, partner2Code=None, | |
| customsCode=None, motCode=None, | |
| maxRecords=500, includeDesc=True | |
| ) | |
| if df is None or df.empty: | |
| return product_name, pd.DataFrame() | |
| std_map = { | |
| 'کد کشور': 'ptCode', | |
| 'نام کشور': 'ptTitle', | |
| 'ارزش CIF': 'TradeValue' | |
| } | |
| code_col = std_map['کد کشور'] if 'ptCode' in df.columns else next((c for c in df.columns if 'code' in c.lower()), None) | |
| title_col = std_map['نام کشور'] if 'ptTitle' in df.columns else next((c for c in df.columns if 'title' in c.lower()), None) | |
| value_col = std_map['ارزش CIF'] if 'TradeValue' in df.columns else next((c for c in df.columns if 'value' in c.lower()), None) | |
| if not (code_col and title_col and value_col): | |
| return product_name, df | |
| df_sorted = df.sort_values(value_col, ascending=False).head(10) | |
| out = df_sorted[[code_col, title_col, value_col]] | |
| out.columns = ['کد کشور', 'نام کشور', 'ارزش CIF'] | |
| return product_name, out | |
| # --- اتصال به OpenAI و مترجم --- | |
| openai_client = OpenAI(api_key=os.getenv("OPENAI")) # سکرت از محیط | |
| translator = GoogleTranslator(source='en', target='fa') | |
| def provide_advice(table_data: pd.DataFrame, hs_code: str, year: str, month: str): | |
| if table_data is None or table_data.empty: | |
| return "ابتدا نمایش دادههای واردات را انجام دهید." | |
| df_limited = table_data.head(10) | |
| table_str = df_limited.to_string(index=False) | |
| period = f"{year}/{int(month):02d}" | |
| prompt = ( | |
| f"The following table shows the top {len(df_limited)} countries by CIF value importing HS code {hs_code} during {period}:\n" | |
| f"{table_str}\n\n" | |
| "Please provide a detailed and comprehensive analysis of market trends, risks, " | |
| "and opportunities for a new exporter entering this market." | |
| ) | |
| try: | |
| response = openai_client.chat.completions.create( | |
| model="gpt-3.5-turbo", | |
| messages=[ | |
| {"role": "system", "content": "You are an expert in international trade and export consulting."}, | |
| {"role": "user", "content": prompt} | |
| ], | |
| max_tokens=1000, | |
| temperature=0.7 | |
| ) | |
| english_response = response.choices[0].message.content | |
| return translator.translate(english_response) | |
| except Exception as e: | |
| return f"خطا در تولید مشاوره: {e}" | |
| # --- رابط کاربری Gradio --- | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## DIGINORON.COM ابزار هوش مصنوعی برای مشاوره صادرات کالا به کشورهای هدف") | |
| with gr.Row(): | |
| inp_hs = gr.Textbox(label="کد HS", placeholder="مثلاً 1006") | |
| inp_year = gr.Textbox(label="سال", placeholder="مثلاً 2023") | |
| inp_month = gr.Textbox(label="ماه", placeholder="مثلاً 1 تا 12") | |
| btn_show = gr.Button("نمایش دادههای واردات") | |
| out_name = gr.Markdown(label="**نام محصول**") | |
| out_table = gr.Dataframe(datatype="pandas", interactive=True) | |
| btn_show.click( | |
| fn=get_importers, | |
| inputs=[inp_hs, inp_year, inp_month], | |
| outputs=[out_name, out_table] | |
| ) | |
| btn_advice = gr.Button("ارائه مشاوره تخصصی") | |
| out_advice = gr.Textbox(label="مشاوره تخصصی", lines=8) | |
| btn_advice.click( | |
| fn=provide_advice, | |
| inputs=[out_table, inp_hs, inp_year, inp_month], | |
| outputs=out_advice | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |