Spaces:
Sleeping
Sleeping
will.k
commited on
Commit
·
80a2449
1
Parent(s):
70ba04d
app.py
CHANGED
|
@@ -2,6 +2,7 @@ import streamlit as st
|
|
| 2 |
import pandas as pd
|
| 3 |
from transformers import pipeline, AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
|
| 4 |
from peft import PeftModel, PeftConfig
|
|
|
|
| 5 |
gr.Blocks(theme= 'pseudolab/huggingface-korea-theme')
|
| 6 |
|
| 7 |
#Note this should be used always in compliance with applicable laws and regulations if used with real patient data.
|
|
@@ -34,14 +35,14 @@ def prepare_context(data):
|
|
| 34 |
|
| 35 |
return input_ids
|
| 36 |
|
| 37 |
-
|
| 38 |
data = pd.read_csv(uploaded_file)
|
| 39 |
-
|
| 40 |
|
| 41 |
# Generate text based on the context
|
| 42 |
context = prepare_context(data)
|
| 43 |
generated_text = pipeline('text-generation', model=model)(context)[0]['generated_text']
|
| 44 |
-
|
| 45 |
|
| 46 |
# Internally prompt the model to data analyze the EHR patient data
|
| 47 |
prompt = "You are an Electronic Health Records analyst with nursing school training. Please analyze patient data that you are provided here. Give an organized, step-by-step, formatted health records analysis. You will always be truthful and if you do nont know the answer say you do not know."
|
|
@@ -52,9 +53,13 @@ if uploaded_file is not None:
|
|
| 52 |
|
| 53 |
# Generate text based on the prompt
|
| 54 |
generated_text = pipeline('text-generation', model=model)(input_ids=input_ids)[0]['generated_text']
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
from transformers import pipeline, AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
|
| 4 |
from peft import PeftModel, PeftConfig
|
| 5 |
+
import gradio as gr
|
| 6 |
gr.Blocks(theme= 'pseudolab/huggingface-korea-theme')
|
| 7 |
|
| 8 |
#Note this should be used always in compliance with applicable laws and regulations if used with real patient data.
|
|
|
|
| 35 |
|
| 36 |
return input_ids
|
| 37 |
|
| 38 |
+
def fn(uploaded_file) -> str:
|
| 39 |
data = pd.read_csv(uploaded_file)
|
| 40 |
+
ret = ""
|
| 41 |
|
| 42 |
# Generate text based on the context
|
| 43 |
context = prepare_context(data)
|
| 44 |
generated_text = pipeline('text-generation', model=model)(context)[0]['generated_text']
|
| 45 |
+
ret += generated_text
|
| 46 |
|
| 47 |
# Internally prompt the model to data analyze the EHR patient data
|
| 48 |
prompt = "You are an Electronic Health Records analyst with nursing school training. Please analyze patient data that you are provided here. Give an organized, step-by-step, formatted health records analysis. You will always be truthful and if you do nont know the answer say you do not know."
|
|
|
|
| 53 |
|
| 54 |
# Generate text based on the prompt
|
| 55 |
generated_text = pipeline('text-generation', model=model)(input_ids=input_ids)[0]['generated_text']
|
| 56 |
+
ret += generated_text
|
| 57 |
+
|
| 58 |
+
return ret
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
demo = gr.Interface(fn=fn, inputs="file", outputs="text")
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
if __name__ == "__main__":
|
| 65 |
+
demo.launch(show_api=False)
|