Upload neat\genome.py with huggingface_hub
Browse files- neat//genome.py +454 -0
neat//genome.py
ADDED
|
@@ -0,0 +1,454 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""NEAT Genome implementation.
|
| 2 |
+
|
| 3 |
+
This module implements the core NEAT genome structure and operations.
|
| 4 |
+
Each genome represents a neural network with nodes (neurons) and connections (synapses).
|
| 5 |
+
The genome can be mutated to evolve the network structure and weights over time.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
from dataclasses import dataclass
|
| 9 |
+
import jax.numpy as jnp
|
| 10 |
+
import jax.random as jrandom
|
| 11 |
+
from typing import Dict, List, Tuple, Optional
|
| 12 |
+
import time
|
| 13 |
+
import random
|
| 14 |
+
import numpy as np
|
| 15 |
+
|
| 16 |
+
@dataclass
|
| 17 |
+
class NodeGene:
|
| 18 |
+
"""Node gene containing activation function and type.
|
| 19 |
+
|
| 20 |
+
Attributes:
|
| 21 |
+
node_id: Unique identifier for this node
|
| 22 |
+
node_type: Type of node ('input', 'hidden', 'recurrent', or 'output')
|
| 23 |
+
activation: Activation function ('tanh', 'relu', 'sigmoid', or 'linear')
|
| 24 |
+
"""
|
| 25 |
+
node_id: int
|
| 26 |
+
node_type: str # 'input', 'hidden', 'recurrent', or 'output'
|
| 27 |
+
activation: str # 'tanh', 'relu', 'sigmoid', or 'linear'
|
| 28 |
+
|
| 29 |
+
@dataclass
|
| 30 |
+
class ConnectionGene:
|
| 31 |
+
"""Connection gene containing connection properties.
|
| 32 |
+
|
| 33 |
+
Attributes:
|
| 34 |
+
source: ID of source node
|
| 35 |
+
target: ID of target node
|
| 36 |
+
weight: Connection weight
|
| 37 |
+
enabled: Whether connection is enabled
|
| 38 |
+
innovation: Unique innovation number for this connection
|
| 39 |
+
"""
|
| 40 |
+
source: int
|
| 41 |
+
target: int
|
| 42 |
+
weight: float
|
| 43 |
+
enabled: bool = True
|
| 44 |
+
innovation: int = 0
|
| 45 |
+
|
| 46 |
+
class Genome:
|
| 47 |
+
"""NEAT Genome implementation.
|
| 48 |
+
|
| 49 |
+
A genome represents a neural network as a collection of node and connection genes.
|
| 50 |
+
The network topology can be modified through mutation operations.
|
| 51 |
+
|
| 52 |
+
Attributes:
|
| 53 |
+
input_size: Number of input nodes
|
| 54 |
+
output_size: Number of output nodes
|
| 55 |
+
node_genes: Dictionary mapping node IDs to NodeGene objects
|
| 56 |
+
connection_genes: List of ConnectionGene objects
|
| 57 |
+
key: Random key for reproducible randomness
|
| 58 |
+
innovation_number: Counter for assigning unique innovation numbers
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
def __init__(self, input_size: int, output_size: int):
|
| 62 |
+
"""Initialize genome with specified number of inputs and outputs.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
input_size: Number of input nodes
|
| 66 |
+
output_size: Number of output nodes (must be 3 for volleyball)
|
| 67 |
+
"""
|
| 68 |
+
self.input_size = input_size
|
| 69 |
+
self.output_size = output_size
|
| 70 |
+
self.node_genes: Dict[int, NodeGene] = {}
|
| 71 |
+
self.connection_genes: List[ConnectionGene] = []
|
| 72 |
+
|
| 73 |
+
# Initialize random key
|
| 74 |
+
timestamp = int(time.time() * 1000)
|
| 75 |
+
self.key = jrandom.PRNGKey(hash((input_size, output_size, timestamp)) % (2**32))
|
| 76 |
+
|
| 77 |
+
# Counter for assigning unique innovation numbers
|
| 78 |
+
self.innovation_number = 0
|
| 79 |
+
|
| 80 |
+
# Initialize minimal network structure
|
| 81 |
+
self._init_minimal()
|
| 82 |
+
|
| 83 |
+
def _init_minimal(self):
|
| 84 |
+
"""Initialize minimal feed-forward network structure.
|
| 85 |
+
|
| 86 |
+
Network structure:
|
| 87 |
+
- Input nodes [0-7]: Game state inputs
|
| 88 |
+
- Hidden layer 1 [8-15]: First processing layer (8 nodes)
|
| 89 |
+
- Hidden layer 2 [16-23]: Second processing layer (8 nodes)
|
| 90 |
+
- Output nodes [24-26]: Action outputs (left, right, jump)
|
| 91 |
+
|
| 92 |
+
Using larger initial weights for faster learning:
|
| 93 |
+
- Input->Hidden1: N(0, 2.0) for strong initial responses
|
| 94 |
+
- Hidden1->Hidden2: N(0, 2.0) for feature processing
|
| 95 |
+
- Hidden2->Output: N(0, 4.0) for decisive actions
|
| 96 |
+
"""
|
| 97 |
+
# Create input nodes (0-7)
|
| 98 |
+
for i in range(8): # Only 8 inputs used
|
| 99 |
+
self.node_genes[i] = NodeGene(
|
| 100 |
+
node_id=i,
|
| 101 |
+
node_type='input',
|
| 102 |
+
activation='linear' # Input nodes are always linear
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Create first hidden layer (8-15)
|
| 106 |
+
hidden1_size = 8
|
| 107 |
+
hidden1_start = 8 # Right after inputs
|
| 108 |
+
for i in range(hidden1_size):
|
| 109 |
+
node_id = hidden1_start + i
|
| 110 |
+
self.node_genes[node_id] = NodeGene(
|
| 111 |
+
node_id=node_id,
|
| 112 |
+
node_type='hidden',
|
| 113 |
+
activation='relu' # ReLU for faster learning
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
# Connect all inputs to this hidden node
|
| 117 |
+
for input_id in range(8):
|
| 118 |
+
weight = float(jrandom.normal(self.key) * 2.0)
|
| 119 |
+
self.connection_genes.append(ConnectionGene(
|
| 120 |
+
source=input_id,
|
| 121 |
+
target=node_id,
|
| 122 |
+
weight=weight,
|
| 123 |
+
enabled=True,
|
| 124 |
+
innovation=self.innovation_number
|
| 125 |
+
))
|
| 126 |
+
self.innovation_number += 1
|
| 127 |
+
|
| 128 |
+
# Create second hidden layer (16-23)
|
| 129 |
+
hidden2_size = 8
|
| 130 |
+
hidden2_start = hidden1_start + hidden1_size
|
| 131 |
+
for i in range(hidden2_size):
|
| 132 |
+
node_id = hidden2_start + i
|
| 133 |
+
self.node_genes[node_id] = NodeGene(
|
| 134 |
+
node_id=node_id,
|
| 135 |
+
node_type='hidden',
|
| 136 |
+
activation='relu' # ReLU for faster learning
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
# Connect all hidden1 nodes to this hidden2 node
|
| 140 |
+
for h1_id in range(hidden1_start, hidden1_start + hidden1_size):
|
| 141 |
+
weight = float(jrandom.normal(self.key) * 2.0)
|
| 142 |
+
self.connection_genes.append(ConnectionGene(
|
| 143 |
+
source=h1_id,
|
| 144 |
+
target=node_id,
|
| 145 |
+
weight=weight,
|
| 146 |
+
enabled=True,
|
| 147 |
+
innovation=self.innovation_number
|
| 148 |
+
))
|
| 149 |
+
self.innovation_number += 1
|
| 150 |
+
|
| 151 |
+
# Create output nodes (24-26)
|
| 152 |
+
output_start = hidden2_start + hidden2_size
|
| 153 |
+
for i in range(self.output_size):
|
| 154 |
+
node_id = output_start + i
|
| 155 |
+
self.node_genes[node_id] = NodeGene(
|
| 156 |
+
node_id=node_id,
|
| 157 |
+
node_type='output',
|
| 158 |
+
activation='tanh' # tanh for [-1,1] outputs
|
| 159 |
+
)
|
| 160 |
+
|
| 161 |
+
# Connect all hidden2 nodes to this output
|
| 162 |
+
for h2_id in range(hidden2_start, hidden2_start + hidden2_size):
|
| 163 |
+
weight = float(jrandom.normal(self.key) * 4.0) # Larger weights for outputs
|
| 164 |
+
self.connection_genes.append(ConnectionGene(
|
| 165 |
+
source=h2_id,
|
| 166 |
+
target=node_id,
|
| 167 |
+
weight=weight,
|
| 168 |
+
enabled=True,
|
| 169 |
+
innovation=self.innovation_number
|
| 170 |
+
))
|
| 171 |
+
self.innovation_number += 1
|
| 172 |
+
|
| 173 |
+
def mutate(self, config: Dict):
|
| 174 |
+
"""Mutate the genome by modifying weights and network structure.
|
| 175 |
+
|
| 176 |
+
Args:
|
| 177 |
+
config: Dictionary containing mutation parameters:
|
| 178 |
+
- weight_mutation_rate: Probability of mutating each weight
|
| 179 |
+
- weight_mutation_power: Standard deviation for weight mutations
|
| 180 |
+
- add_node_rate: Probability of adding a new node
|
| 181 |
+
- add_connection_rate: Probability of adding a new connection
|
| 182 |
+
"""
|
| 183 |
+
# Mutate connection weights
|
| 184 |
+
for conn in self.connection_genes:
|
| 185 |
+
if jrandom.uniform(self.key) < config['weight_mutation_rate']:
|
| 186 |
+
# Get new random key
|
| 187 |
+
self.key, subkey = jrandom.split(self.key)
|
| 188 |
+
# Add random value from normal distribution
|
| 189 |
+
conn.weight += float(jrandom.normal(subkey) * config['weight_mutation_power'])
|
| 190 |
+
|
| 191 |
+
# Add new nodes (disabled for now since we're using fixed topology)
|
| 192 |
+
if config['add_node_rate'] > 0:
|
| 193 |
+
if jrandom.uniform(self.key) < config['add_node_rate']:
|
| 194 |
+
self._add_node()
|
| 195 |
+
|
| 196 |
+
# Add new connections (disabled for now)
|
| 197 |
+
if config['add_connection_rate'] > 0:
|
| 198 |
+
if jrandom.uniform(self.key) < config['add_connection_rate']:
|
| 199 |
+
self._add_connection()
|
| 200 |
+
|
| 201 |
+
def _add_node(self):
|
| 202 |
+
"""Add a new node by splitting an existing connection."""
|
| 203 |
+
if not self.connection_genes:
|
| 204 |
+
return
|
| 205 |
+
|
| 206 |
+
# Choose a random connection to split
|
| 207 |
+
conn_to_split = np.random.choice(self.connection_genes)
|
| 208 |
+
conn_to_split.enabled = False
|
| 209 |
+
|
| 210 |
+
# Create new node
|
| 211 |
+
new_node_id = max(self.node_genes.keys()) + 1
|
| 212 |
+
self.node_genes[new_node_id] = NodeGene(
|
| 213 |
+
node_id=new_node_id,
|
| 214 |
+
node_type='hidden',
|
| 215 |
+
activation='relu'
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
# Create two new connections
|
| 219 |
+
self.connection_genes.extend([
|
| 220 |
+
ConnectionGene(
|
| 221 |
+
source=conn_to_split.source,
|
| 222 |
+
target=new_node_id,
|
| 223 |
+
weight=1.0,
|
| 224 |
+
enabled=True,
|
| 225 |
+
innovation=self.innovation_number
|
| 226 |
+
),
|
| 227 |
+
ConnectionGene(
|
| 228 |
+
source=new_node_id,
|
| 229 |
+
target=conn_to_split.target,
|
| 230 |
+
weight=conn_to_split.weight,
|
| 231 |
+
enabled=True,
|
| 232 |
+
innovation=self.innovation_number + 1
|
| 233 |
+
)
|
| 234 |
+
])
|
| 235 |
+
self.innovation_number += 2
|
| 236 |
+
|
| 237 |
+
def _add_connection(self):
|
| 238 |
+
"""Add a new connection between two unconnected nodes."""
|
| 239 |
+
# Get list of all possible connections
|
| 240 |
+
existing_connections = {(c.source, c.target) for c in self.connection_genes}
|
| 241 |
+
possible_connections = []
|
| 242 |
+
|
| 243 |
+
for source in self.node_genes:
|
| 244 |
+
for target in self.node_genes:
|
| 245 |
+
# Skip if connection already exists
|
| 246 |
+
if (source, target) in existing_connections:
|
| 247 |
+
continue
|
| 248 |
+
|
| 249 |
+
# Skip if would create cycle (except recurrent)
|
| 250 |
+
if self.node_genes[source].node_type != 'recurrent' and \
|
| 251 |
+
self.would_create_cycle(source, target):
|
| 252 |
+
continue
|
| 253 |
+
|
| 254 |
+
possible_connections.append((source, target))
|
| 255 |
+
|
| 256 |
+
if possible_connections:
|
| 257 |
+
# Choose random connection
|
| 258 |
+
source, target = random.choice(possible_connections)
|
| 259 |
+
|
| 260 |
+
# Create new connection
|
| 261 |
+
weight = float(jrandom.normal(self.key) * 1.0)
|
| 262 |
+
self.connection_genes.append(ConnectionGene(
|
| 263 |
+
source=source,
|
| 264 |
+
target=target,
|
| 265 |
+
weight=weight,
|
| 266 |
+
enabled=True,
|
| 267 |
+
innovation=self.innovation_number
|
| 268 |
+
))
|
| 269 |
+
self.innovation_number += 1
|
| 270 |
+
|
| 271 |
+
def would_create_cycle(self, source: int, target: int) -> bool:
|
| 272 |
+
"""Check if adding connection would create cycle in network.
|
| 273 |
+
|
| 274 |
+
Args:
|
| 275 |
+
source: Source node ID
|
| 276 |
+
target: Target node ID
|
| 277 |
+
|
| 278 |
+
Returns:
|
| 279 |
+
True if connection would create cycle, False otherwise
|
| 280 |
+
"""
|
| 281 |
+
# Skip cycle detection for recurrent connections
|
| 282 |
+
if self.node_genes[source].node_type == 'recurrent' or \
|
| 283 |
+
self.node_genes[target].node_type == 'recurrent':
|
| 284 |
+
return False
|
| 285 |
+
|
| 286 |
+
# Do depth-first search from target to see if we can reach source
|
| 287 |
+
visited = set()
|
| 288 |
+
|
| 289 |
+
def dfs(node: int) -> bool:
|
| 290 |
+
if node == source:
|
| 291 |
+
return True
|
| 292 |
+
if node in visited:
|
| 293 |
+
return False
|
| 294 |
+
|
| 295 |
+
visited.add(node)
|
| 296 |
+
for conn in self.connection_genes:
|
| 297 |
+
if conn.source == node and conn.enabled:
|
| 298 |
+
if dfs(conn.target):
|
| 299 |
+
return True
|
| 300 |
+
return False
|
| 301 |
+
|
| 302 |
+
return dfs(target)
|
| 303 |
+
|
| 304 |
+
def add_node_between(self, source: int, target: int):
|
| 305 |
+
"""Add a new node between two nodes, splitting an existing connection.
|
| 306 |
+
|
| 307 |
+
Args:
|
| 308 |
+
source: Source node ID
|
| 309 |
+
target: Target node ID
|
| 310 |
+
"""
|
| 311 |
+
# Find and disable the existing connection
|
| 312 |
+
for conn in self.connection_genes:
|
| 313 |
+
if conn.source == source and conn.target == target and conn.enabled:
|
| 314 |
+
conn.enabled = False
|
| 315 |
+
|
| 316 |
+
# Create new node
|
| 317 |
+
new_id = max(self.node_genes.keys()) + 1
|
| 318 |
+
self.node_genes[new_id] = NodeGene(
|
| 319 |
+
node_id=new_id,
|
| 320 |
+
node_type='hidden',
|
| 321 |
+
activation='relu'
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
# Create two new connections
|
| 325 |
+
self.connection_genes.extend([
|
| 326 |
+
ConnectionGene(
|
| 327 |
+
source=source,
|
| 328 |
+
target=new_id,
|
| 329 |
+
weight=1.0,
|
| 330 |
+
enabled=True,
|
| 331 |
+
innovation=self.innovation_number
|
| 332 |
+
),
|
| 333 |
+
ConnectionGene(
|
| 334 |
+
source=new_id,
|
| 335 |
+
target=target,
|
| 336 |
+
weight=conn.weight,
|
| 337 |
+
enabled=True,
|
| 338 |
+
innovation=self.innovation_number + 1
|
| 339 |
+
)
|
| 340 |
+
])
|
| 341 |
+
self.innovation_number += 2
|
| 342 |
+
break
|
| 343 |
+
|
| 344 |
+
def add_connection(self, source: int, target: int, weight: Optional[float] = None) -> bool:
|
| 345 |
+
"""Add a new connection between two nodes.
|
| 346 |
+
|
| 347 |
+
Args:
|
| 348 |
+
source: Source node ID
|
| 349 |
+
target: Target node ID
|
| 350 |
+
weight: Optional connection weight. If None, a random weight is generated.
|
| 351 |
+
|
| 352 |
+
Returns:
|
| 353 |
+
True if connection was added, False if invalid or already exists
|
| 354 |
+
"""
|
| 355 |
+
# Check if connection already exists
|
| 356 |
+
if any(c.source == source and c.target == target for c in self.connection_genes):
|
| 357 |
+
return False
|
| 358 |
+
|
| 359 |
+
# Validate nodes exist
|
| 360 |
+
if source not in self.node_genes or target not in self.node_genes:
|
| 361 |
+
return False
|
| 362 |
+
|
| 363 |
+
# Ensure feed-forward (no cycles)
|
| 364 |
+
if source >= target: # Simple way to ensure feed-forward
|
| 365 |
+
return False
|
| 366 |
+
|
| 367 |
+
# Generate random weight if not provided
|
| 368 |
+
if weight is None:
|
| 369 |
+
weight = float(jrandom.normal(self.key) * 1.0)
|
| 370 |
+
|
| 371 |
+
# Add new connection
|
| 372 |
+
self.connection_genes.append(ConnectionGene(
|
| 373 |
+
source=source,
|
| 374 |
+
target=target,
|
| 375 |
+
weight=weight,
|
| 376 |
+
enabled=True,
|
| 377 |
+
innovation=self.innovation_number
|
| 378 |
+
))
|
| 379 |
+
self.innovation_number += 1
|
| 380 |
+
return True
|
| 381 |
+
|
| 382 |
+
def crossover(self, other: 'Genome', key: jnp.ndarray) -> 'Genome':
|
| 383 |
+
"""Perform crossover between two genomes.
|
| 384 |
+
|
| 385 |
+
Args:
|
| 386 |
+
other: Other parent genome
|
| 387 |
+
key: JAX PRNG key
|
| 388 |
+
|
| 389 |
+
Returns:
|
| 390 |
+
Child genome
|
| 391 |
+
"""
|
| 392 |
+
# Create child genome
|
| 393 |
+
child = Genome(self.input_size, self.output_size)
|
| 394 |
+
|
| 395 |
+
# Inherit node genes
|
| 396 |
+
for node_id in self.node_genes:
|
| 397 |
+
if node_id in other.node_genes:
|
| 398 |
+
# Inherit randomly from either parent
|
| 399 |
+
if jrandom.uniform(key) < 0.5:
|
| 400 |
+
child.node_genes[node_id] = self.node_genes[node_id]
|
| 401 |
+
else:
|
| 402 |
+
child.node_genes[node_id] = other.node_genes[node_id]
|
| 403 |
+
else:
|
| 404 |
+
# Inherit from fitter parent
|
| 405 |
+
child.node_genes[node_id] = self.node_genes[node_id]
|
| 406 |
+
|
| 407 |
+
# Inherit connection genes
|
| 408 |
+
for conn in self.connection_genes:
|
| 409 |
+
if conn.innovation in [c.innovation for c in other.connection_genes]:
|
| 410 |
+
# Inherit randomly from either parent
|
| 411 |
+
other_conn = next(c for c in other.connection_genes if c.innovation == conn.innovation)
|
| 412 |
+
if jrandom.uniform(key) < 0.5:
|
| 413 |
+
child.connection_genes.append(ConnectionGene(
|
| 414 |
+
source=conn.source,
|
| 415 |
+
target=conn.target,
|
| 416 |
+
weight=conn.weight,
|
| 417 |
+
enabled=conn.enabled,
|
| 418 |
+
innovation=conn.innovation
|
| 419 |
+
))
|
| 420 |
+
else:
|
| 421 |
+
child.connection_genes.append(ConnectionGene(
|
| 422 |
+
source=other_conn.source,
|
| 423 |
+
target=other_conn.target,
|
| 424 |
+
weight=other_conn.weight,
|
| 425 |
+
enabled=other_conn.enabled,
|
| 426 |
+
innovation=other_conn.innovation
|
| 427 |
+
))
|
| 428 |
+
else:
|
| 429 |
+
# Inherit from fitter parent
|
| 430 |
+
child.connection_genes.append(ConnectionGene(
|
| 431 |
+
source=conn.source,
|
| 432 |
+
target=conn.target,
|
| 433 |
+
weight=conn.weight,
|
| 434 |
+
enabled=conn.enabled,
|
| 435 |
+
innovation=conn.innovation
|
| 436 |
+
))
|
| 437 |
+
|
| 438 |
+
return child
|
| 439 |
+
|
| 440 |
+
def clone(self) -> 'Genome':
|
| 441 |
+
"""Create a copy of this genome.
|
| 442 |
+
|
| 443 |
+
Returns:
|
| 444 |
+
Copy of genome
|
| 445 |
+
"""
|
| 446 |
+
clone = Genome(self.input_size, self.output_size)
|
| 447 |
+
clone.node_genes = self.node_genes.copy()
|
| 448 |
+
clone.connection_genes = [ConnectionGene(**conn.__dict__) for conn in self.connection_genes]
|
| 449 |
+
return clone
|
| 450 |
+
|
| 451 |
+
@property
|
| 452 |
+
def n_nodes(self) -> int:
|
| 453 |
+
"""Get total number of nodes in the genome."""
|
| 454 |
+
return len(self.node_genes)
|