voyager / data_engine /metric3d_infer.py
ezeanubis's picture
Upload folder using huggingface_hub
a7aea10 verified
import os
import cv2
import argparse
import torch
import itertools
import json
from pathlib import Path
from typing import *
import pyexr
def main(image_dir, intrinsic_path, output_dir):
os.makedirs(output_dir, exist_ok=True)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
include_suffices = ['jpg', 'png', 'jpeg', 'JPG', 'PNG', 'JPEG']
image_paths = sorted(itertools.chain(*(Path(image_dir).rglob(f'*.{suffix}') for suffix in include_suffices)))
# load model
model = torch.hub.load("Metric3D", 'metric3d_vit_giant2', pretrain=True, source='local')
model = model.to(device)
model.eval()
with open(intrinsic_path, 'r') as f:
colmap_data = json.load(f)
# Sort JSON keys by frame number (001, 002...109)
sorted_frame_ids = sorted(colmap_data.keys(), key=lambda x: int(x))
# Generate intrinsic list in order
intrinsic_list = [colmap_data[frame_id]['intrinsic'] for frame_id in sorted_frame_ids]
if len(image_paths) != len(intrinsic_list):
raise ValueError(f"Number of images ({len(image_paths)}) does not match JSON frames ({len(intrinsic_list)})")
# Check existing EXR files in output directory
output_exr_files = list(Path(output_dir).glob('*.exr'))
if len(output_exr_files) >= len(image_paths):
return
for idx, image_path in enumerate(image_paths):
# Get corresponding intrinsic data by index
intrinsic_data = intrinsic_list[idx]
fx = intrinsic_data[0][0]
fy = intrinsic_data[1][1]
cx = intrinsic_data[0][2]
cy = intrinsic_data[1][2]
intrinsic = [fx, fy, cx, cy]
# print(f"Processing image {image_path}")
# load image
rgb_origin = cv2.imread(str(image_path))[:, :, ::-1]
# Adjust input size to fit pretrained model
input_size = (616, 1064) # for vit model
h, w = rgb_origin.shape[:2]
scale = min(input_size[0] / h, input_size[1] / w)
rgb = cv2.resize(rgb_origin, (int(w * scale), int(h * scale)), interpolation=cv2.INTER_LINEAR)
# Remember to scale intrinsic, hold depth
intrinsic = [intrinsic[0] * scale, intrinsic[1] * scale, intrinsic[2] * scale, intrinsic[3] * scale]
# Padding to input_size
padding = [123.675, 116.28, 103.53]
h, w = rgb.shape[:2]
pad_h = input_size[0] - h
pad_w = input_size[1] - w
pad_h_half = pad_h // 2
pad_w_half = pad_w // 2
rgb = cv2.copyMakeBorder(rgb, pad_h_half, pad_h - pad_h_half, \
pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=padding)
pad_info = [pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half]
# Normalize
mean = torch.tensor([123.675, 116.28, 103.53]).float()[:, None, None]
std = torch.tensor([58.395, 57.12, 57.375]).float()[:, None, None]
rgb = torch.from_numpy(rgb.transpose((2, 0, 1))).float()
rgb = torch.div((rgb - mean), std)
rgb = rgb[None, :, :, :].cuda()
# Canonical camera space
# inference
with torch.no_grad():
pred_depth, _, _ = model.inference({'input': rgb})
# Unpad
pred_depth = pred_depth.squeeze()
pred_depth = pred_depth[pad_info[0] : pred_depth.shape[0] - pad_info[1], \
pad_info[2] : pred_depth.shape[1] - pad_info[3]]
# Upsample to original size
pred_depth = torch.nn.functional.interpolate(pred_depth[None, None, :, :], \
rgb_origin.shape[:2], mode='bilinear').squeeze()
# Canonical camera space
# De-canonical transform
canonical_to_real_scale = intrinsic[0] / 1000.0 # 1000.0 is the focal length of canonical camera
pred_depth = pred_depth * canonical_to_real_scale # now the depth is metric
depth = pred_depth.cpu().numpy()
exr_output_dir = Path(output_dir)
exr_output_dir.mkdir(exist_ok=True, parents=True)
# Construct filename (use image_path stem directly)
filename = f"{image_path.stem}.exr"
save_file = exr_output_dir.joinpath(filename)
pyexr.write(save_file, depth[..., None], channel_names=["Y"])
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run metric3d data engine.")
parser.add_argument('--image_dir', type=str, required=True, help='Path to input images directory')
parser.add_argument('--intrinsic_path', type=str, required=True, help='Path to intrinsic file')
parser.add_argument('--output_dir', type=str, required=True, help='Path to output directory')
args = parser.parse_args()
main(args.image_dir, args.intrinsic_path, args.output_dir)