Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,6 +12,11 @@ from gradio_imageslider import ImageSlider
|
|
| 12 |
from PIL import Image
|
| 13 |
from huggingface_hub import snapshot_download
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
css = """
|
| 16 |
#col-container {
|
| 17 |
margin: 0 auto;
|
|
@@ -19,97 +24,96 @@ css = """
|
|
| 19 |
}
|
| 20 |
"""
|
| 21 |
|
| 22 |
-
# Device
|
| 23 |
if torch.cuda.is_available():
|
| 24 |
power_device = "GPU"
|
| 25 |
device = "cuda"
|
| 26 |
-
dtype = torch.float16 #
|
|
|
|
|
|
|
| 27 |
else:
|
| 28 |
power_device = "CPU"
|
| 29 |
device = "cpu"
|
| 30 |
dtype = torch.float32
|
| 31 |
|
| 32 |
-
# Reduce CUDA memory usage
|
| 33 |
-
torch.cuda.empty_cache()
|
| 34 |
-
if torch.cuda.is_available():
|
| 35 |
-
torch.cuda.set_per_process_memory_fraction(0.7) # Use only 70% of GPU memory
|
| 36 |
-
|
| 37 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
model_path = snapshot_download(
|
| 40 |
repo_id="black-forest-labs/FLUX.1-dev",
|
| 41 |
repo_type="model",
|
| 42 |
-
ignore_patterns=["*.md", "*..gitattributes"],
|
| 43 |
local_dir="FLUX.1-dev",
|
| 44 |
token=huggingface_token,
|
| 45 |
)
|
| 46 |
|
| 47 |
-
# Load
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
low_cpu_mem_usage=True,
|
| 60 |
-
use_safetensors=True
|
| 61 |
-
)
|
| 62 |
|
| 63 |
-
# Enable all
|
| 64 |
-
pipe.enable_model_cpu_offload()
|
| 65 |
-
pipe.enable_attention_slicing(1)
|
| 66 |
-
pipe.enable_sequential_cpu_offload()
|
| 67 |
-
pipe.enable_vae_slicing()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
#
|
| 70 |
MAX_SEED = 1000000
|
| 71 |
-
MAX_PIXEL_BUDGET =
|
| 72 |
|
| 73 |
def check_resources():
|
| 74 |
if torch.cuda.is_available():
|
| 75 |
-
gpu_memory = torch.cuda.get_device_properties(0).total_memory
|
| 76 |
memory_allocated = torch.cuda.memory_allocated(0)
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
| 79 |
return True
|
| 80 |
|
| 81 |
def process_input(input_image, upscale_factor, **kwargs):
|
| 82 |
-
# Convert image to RGB mode to ensure compatibility
|
| 83 |
input_image = input_image.convert('RGB')
|
| 84 |
|
|
|
|
| 85 |
w, h = input_image.size
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
)
|
| 95 |
-
|
| 96 |
-
f"Resizing input image to fit memory constraints..."
|
| 97 |
-
)
|
| 98 |
-
input_image = input_image.resize(
|
| 99 |
-
(
|
| 100 |
-
int(aspect_ratio * MAX_PIXEL_BUDGET**0.5 // upscale_factor),
|
| 101 |
-
int(MAX_PIXEL_BUDGET**0.5 // aspect_ratio // upscale_factor),
|
| 102 |
-
),
|
| 103 |
-
Image.LANCZOS
|
| 104 |
-
)
|
| 105 |
-
was_resized = True
|
| 106 |
-
|
| 107 |
-
# resize to multiple of 8
|
| 108 |
w, h = input_image.size
|
| 109 |
w = w - w % 8
|
| 110 |
h = h - h % 8
|
| 111 |
-
|
| 112 |
-
return input_image.resize((w, h)),
|
| 113 |
|
| 114 |
@spaces.GPU
|
| 115 |
def infer(
|
|
@@ -122,55 +126,32 @@ def infer(
|
|
| 122 |
progress=gr.Progress(track_tqdm=True),
|
| 123 |
):
|
| 124 |
try:
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
# Clear CUDA cache before processing
|
| 130 |
-
if device == "cuda":
|
| 131 |
-
torch.cuda.empty_cache()
|
| 132 |
-
|
| 133 |
if randomize_seed:
|
| 134 |
seed = random.randint(0, MAX_SEED)
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
# rescale with upscale factor
|
| 142 |
-
w, h = input_image.size
|
| 143 |
-
control_image = input_image.resize((w * upscale_factor, h * upscale_factor))
|
| 144 |
-
|
| 145 |
-
generator = torch.Generator().manual_seed(seed)
|
| 146 |
-
|
| 147 |
-
gr.Info("Upscaling image...")
|
| 148 |
-
with torch.inference_mode(): # Use inference mode to save memory
|
| 149 |
image = pipe(
|
| 150 |
prompt="",
|
| 151 |
-
control_image=
|
| 152 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 153 |
num_inference_steps=num_inference_steps,
|
| 154 |
-
guidance_scale=3.5
|
| 155 |
-
height=
|
| 156 |
-
width=
|
| 157 |
generator=generator,
|
| 158 |
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
|
| 160 |
-
if was_resized:
|
| 161 |
-
gr.Info(
|
| 162 |
-
f"Resizing output image to final size..."
|
| 163 |
-
)
|
| 164 |
-
|
| 165 |
-
# resize to target desired size
|
| 166 |
-
image = image.resize((w_original * upscale_factor, h_original * upscale_factor))
|
| 167 |
-
return [true_input_image, image, seed]
|
| 168 |
-
|
| 169 |
-
except RuntimeError as e:
|
| 170 |
-
if "out of memory" in str(e):
|
| 171 |
-
gr.Warning("Not enough GPU memory. Try reducing the upscale factor or image size.")
|
| 172 |
-
return None
|
| 173 |
-
raise e
|
| 174 |
except Exception as e:
|
| 175 |
gr.Error(f"An error occurred: {str(e)}")
|
| 176 |
return None
|
|
@@ -184,25 +165,25 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 184 |
input_im = gr.Image(label="Input Image", type="pil")
|
| 185 |
with gr.Column(scale=1):
|
| 186 |
num_inference_steps = gr.Slider(
|
| 187 |
-
label="
|
| 188 |
-
minimum=
|
| 189 |
-
maximum=
|
| 190 |
step=1,
|
| 191 |
-
value=
|
| 192 |
)
|
| 193 |
upscale_factor = gr.Slider(
|
| 194 |
-
label="
|
| 195 |
minimum=1,
|
| 196 |
-
maximum=
|
| 197 |
step=1,
|
| 198 |
-
value=1,
|
| 199 |
)
|
| 200 |
controlnet_conditioning_scale = gr.Slider(
|
| 201 |
-
label="
|
| 202 |
minimum=0.1,
|
| 203 |
-
maximum=
|
| 204 |
step=0.1,
|
| 205 |
-
value=0.
|
| 206 |
)
|
| 207 |
seed = gr.Slider(
|
| 208 |
label="Seed",
|
|
@@ -211,18 +192,17 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 211 |
step=1,
|
| 212 |
value=42,
|
| 213 |
)
|
| 214 |
-
|
| 215 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 216 |
|
| 217 |
with gr.Row():
|
| 218 |
-
result = ImageSlider(label="
|
| 219 |
|
| 220 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
| 221 |
|
| 222 |
examples = gr.Examples(
|
| 223 |
examples=[
|
| 224 |
-
[42, False, os.path.join(current_dir, "z1.webp"),
|
| 225 |
-
[42, False, os.path.join(current_dir, "z2.webp"),
|
| 226 |
],
|
| 227 |
inputs=[
|
| 228 |
seed,
|
|
@@ -234,7 +214,7 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 234 |
],
|
| 235 |
fn=infer,
|
| 236 |
outputs=result,
|
| 237 |
-
cache_examples=
|
| 238 |
)
|
| 239 |
|
| 240 |
gr.on(
|
|
@@ -252,11 +232,13 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css) as demo:
|
|
| 252 |
show_api=False,
|
| 253 |
)
|
| 254 |
|
| 255 |
-
# Launch with minimal
|
| 256 |
demo.queue(max_size=1).launch(
|
| 257 |
share=False,
|
| 258 |
debug=True,
|
| 259 |
show_error=True,
|
| 260 |
max_threads=1,
|
| 261 |
-
enable_queue=True
|
|
|
|
|
|
|
| 262 |
)
|
|
|
|
| 12 |
from PIL import Image
|
| 13 |
from huggingface_hub import snapshot_download
|
| 14 |
|
| 15 |
+
# 메모리 관리를 위한 gc 추가
|
| 16 |
+
import gc
|
| 17 |
+
gc.collect()
|
| 18 |
+
torch.cuda.empty_cache()
|
| 19 |
+
|
| 20 |
css = """
|
| 21 |
#col-container {
|
| 22 |
margin: 0 auto;
|
|
|
|
| 24 |
}
|
| 25 |
"""
|
| 26 |
|
| 27 |
+
# Device setup with minimal memory usage
|
| 28 |
if torch.cuda.is_available():
|
| 29 |
power_device = "GPU"
|
| 30 |
device = "cuda"
|
| 31 |
+
dtype = torch.float16 # Use float16 for minimum memory
|
| 32 |
+
# Set CUDA memory fraction to 50%
|
| 33 |
+
torch.cuda.set_per_process_memory_fraction(0.5)
|
| 34 |
else:
|
| 35 |
power_device = "CPU"
|
| 36 |
device = "cpu"
|
| 37 |
dtype = torch.float32
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
| 40 |
|
| 41 |
+
# Minimal model configuration
|
| 42 |
+
model_config = {
|
| 43 |
+
"low_cpu_mem_usage": True,
|
| 44 |
+
"torch_dtype": dtype,
|
| 45 |
+
"use_safetensors": True,
|
| 46 |
+
"variant": "fp16", # Use fp16 variant if available
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
model_path = snapshot_download(
|
| 50 |
repo_id="black-forest-labs/FLUX.1-dev",
|
| 51 |
repo_type="model",
|
| 52 |
+
ignore_patterns=["*.md", "*..gitattributes", "*.bin"], # Ignore unnecessary files
|
| 53 |
local_dir="FLUX.1-dev",
|
| 54 |
token=huggingface_token,
|
| 55 |
)
|
| 56 |
|
| 57 |
+
# Load models with minimal configuration
|
| 58 |
+
try:
|
| 59 |
+
controlnet = FluxControlNetModel.from_pretrained(
|
| 60 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler",
|
| 61 |
+
**model_config
|
| 62 |
+
).to(device)
|
| 63 |
+
|
| 64 |
+
pipe = FluxControlNetPipeline.from_pretrained(
|
| 65 |
+
model_path,
|
| 66 |
+
controlnet=controlnet,
|
| 67 |
+
**model_config
|
| 68 |
+
)
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
+
# Enable all memory optimizations
|
| 71 |
+
pipe.enable_model_cpu_offload()
|
| 72 |
+
pipe.enable_attention_slicing(1)
|
| 73 |
+
pipe.enable_sequential_cpu_offload()
|
| 74 |
+
pipe.enable_vae_slicing()
|
| 75 |
+
|
| 76 |
+
# Clear memory after loading
|
| 77 |
+
gc.collect()
|
| 78 |
+
torch.cuda.empty_cache()
|
| 79 |
+
|
| 80 |
+
except Exception as e:
|
| 81 |
+
print(f"Error loading models: {e}")
|
| 82 |
+
raise
|
| 83 |
|
| 84 |
+
# Extremely reduced parameters
|
| 85 |
MAX_SEED = 1000000
|
| 86 |
+
MAX_PIXEL_BUDGET = 128 * 128 # Extremely reduced from 256 * 256
|
| 87 |
|
| 88 |
def check_resources():
|
| 89 |
if torch.cuda.is_available():
|
|
|
|
| 90 |
memory_allocated = torch.cuda.memory_allocated(0)
|
| 91 |
+
memory_reserved = torch.cuda.memory_reserved(0)
|
| 92 |
+
if memory_allocated/memory_reserved > 0.7: # 70% threshold
|
| 93 |
+
gc.collect()
|
| 94 |
+
torch.cuda.empty_cache()
|
| 95 |
return True
|
| 96 |
|
| 97 |
def process_input(input_image, upscale_factor, **kwargs):
|
|
|
|
| 98 |
input_image = input_image.convert('RGB')
|
| 99 |
|
| 100 |
+
# Reduce image size more aggressively
|
| 101 |
w, h = input_image.size
|
| 102 |
+
max_size = int(np.sqrt(MAX_PIXEL_BUDGET))
|
| 103 |
+
if w > max_size or h > max_size:
|
| 104 |
+
if w > h:
|
| 105 |
+
new_w = max_size
|
| 106 |
+
new_h = int(h * max_size / w)
|
| 107 |
+
else:
|
| 108 |
+
new_h = max_size
|
| 109 |
+
new_w = int(w * max_size / h)
|
| 110 |
+
input_image = input_image.resize((new_w, new_h), Image.LANCZOS)
|
| 111 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
w, h = input_image.size
|
| 113 |
w = w - w % 8
|
| 114 |
h = h - h % 8
|
| 115 |
+
|
| 116 |
+
return input_image.resize((w, h)), w, h, True
|
| 117 |
|
| 118 |
@spaces.GPU
|
| 119 |
def infer(
|
|
|
|
| 126 |
progress=gr.Progress(track_tqdm=True),
|
| 127 |
):
|
| 128 |
try:
|
| 129 |
+
gc.collect()
|
| 130 |
+
torch.cuda.empty_cache()
|
| 131 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
if randomize_seed:
|
| 133 |
seed = random.randint(0, MAX_SEED)
|
| 134 |
|
| 135 |
+
input_image, w, h, _ = process_input(input_image, upscale_factor)
|
| 136 |
+
|
| 137 |
+
with torch.inference_mode():
|
| 138 |
+
generator = torch.Generator().manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
image = pipe(
|
| 140 |
prompt="",
|
| 141 |
+
control_image=input_image,
|
| 142 |
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 143 |
num_inference_steps=num_inference_steps,
|
| 144 |
+
guidance_scale=2.0, # Reduced from 3.5
|
| 145 |
+
height=h,
|
| 146 |
+
width=w,
|
| 147 |
generator=generator,
|
| 148 |
).images[0]
|
| 149 |
+
|
| 150 |
+
gc.collect()
|
| 151 |
+
torch.cuda.empty_cache()
|
| 152 |
+
|
| 153 |
+
return [input_image, image, seed]
|
| 154 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
except Exception as e:
|
| 156 |
gr.Error(f"An error occurred: {str(e)}")
|
| 157 |
return None
|
|
|
|
| 165 |
input_im = gr.Image(label="Input Image", type="pil")
|
| 166 |
with gr.Column(scale=1):
|
| 167 |
num_inference_steps = gr.Slider(
|
| 168 |
+
label="Steps",
|
| 169 |
+
minimum=1,
|
| 170 |
+
maximum=20, # Reduced from 30
|
| 171 |
step=1,
|
| 172 |
+
value=10, # Reduced from 20
|
| 173 |
)
|
| 174 |
upscale_factor = gr.Slider(
|
| 175 |
+
label="Scale",
|
| 176 |
minimum=1,
|
| 177 |
+
maximum=1, # Fixed at 1
|
| 178 |
step=1,
|
| 179 |
+
value=1,
|
| 180 |
)
|
| 181 |
controlnet_conditioning_scale = gr.Slider(
|
| 182 |
+
label="Control Scale",
|
| 183 |
minimum=0.1,
|
| 184 |
+
maximum=0.5, # Reduced from 1.0
|
| 185 |
step=0.1,
|
| 186 |
+
value=0.3, # Reduced from 0.5
|
| 187 |
)
|
| 188 |
seed = gr.Slider(
|
| 189 |
label="Seed",
|
|
|
|
| 192 |
step=1,
|
| 193 |
value=42,
|
| 194 |
)
|
| 195 |
+
randomize_seed = gr.Checkbox(label="Random Seed", value=True)
|
|
|
|
| 196 |
|
| 197 |
with gr.Row():
|
| 198 |
+
result = ImageSlider(label="Result", type="pil", interactive=True)
|
| 199 |
|
| 200 |
current_dir = os.path.dirname(os.path.abspath(__file__))
|
| 201 |
|
| 202 |
examples = gr.Examples(
|
| 203 |
examples=[
|
| 204 |
+
[42, False, os.path.join(current_dir, "z1.webp"), 10, 1, 0.3],
|
| 205 |
+
[42, False, os.path.join(current_dir, "z2.webp"), 10, 1, 0.3],
|
| 206 |
],
|
| 207 |
inputs=[
|
| 208 |
seed,
|
|
|
|
| 214 |
],
|
| 215 |
fn=infer,
|
| 216 |
outputs=result,
|
| 217 |
+
cache_examples=False, # Disable caching
|
| 218 |
)
|
| 219 |
|
| 220 |
gr.on(
|
|
|
|
| 232 |
show_api=False,
|
| 233 |
)
|
| 234 |
|
| 235 |
+
# Launch with minimal resources
|
| 236 |
demo.queue(max_size=1).launch(
|
| 237 |
share=False,
|
| 238 |
debug=True,
|
| 239 |
show_error=True,
|
| 240 |
max_threads=1,
|
| 241 |
+
enable_queue=True,
|
| 242 |
+
cache_examples=False,
|
| 243 |
+
quiet=True,
|
| 244 |
)
|