Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,13 +11,13 @@ import random
|
|
| 11 |
import time
|
| 12 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 13 |
|
| 14 |
-
# Retrieve the token from environment variables
|
| 15 |
hf_token = os.environ.get("HF_TOKEN")
|
| 16 |
if not hf_token:
|
| 17 |
st.error("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
| 18 |
st.stop()
|
| 19 |
|
| 20 |
-
#
|
| 21 |
login(token=hf_token)
|
| 22 |
|
| 23 |
# Timer component using HTML and JavaScript
|
|
@@ -52,6 +52,7 @@ st.header("𝕏/Twitter Tweets Sentiment Report Generator")
|
|
| 52 |
# Concise introduction
|
| 53 |
st.write("This model🎰 will score your tweets in your CSV file🗄️ based on their sentiment😀 and generate a report🗟 answering your query question❔ based on those results.")
|
| 54 |
|
|
|
|
| 55 |
def print_gpu_status(label):
|
| 56 |
if torch.cuda.is_available():
|
| 57 |
allocated = torch.cuda.memory_allocated() / 1024**3
|
|
@@ -78,6 +79,58 @@ def clear_gpu_memory():
|
|
| 78 |
if torch.cuda.is_available():
|
| 79 |
torch.cuda.empty_cache()
|
| 80 |
torch.cuda.ipc_collect()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
# Main Function Part:
|
| 83 |
def main():
|
|
@@ -137,7 +190,7 @@ def main():
|
|
| 137 |
docs_to_summarize.append(doc)
|
| 138 |
docs_indices.append(i)
|
| 139 |
|
| 140 |
-
# If we have documents to summarize, load
|
| 141 |
if docs_to_summarize:
|
| 142 |
status_text.markdown("**📝 Loading summarization model...**")
|
| 143 |
t5_pipe = get_summary_model()
|
|
@@ -168,7 +221,7 @@ def main():
|
|
| 168 |
except Exception as e:
|
| 169 |
st.warning(f"Error summarizing document {i}: {str(e)}")
|
| 170 |
|
| 171 |
-
# Clear
|
| 172 |
del t5_pipe
|
| 173 |
import gc
|
| 174 |
gc.collect()
|
|
@@ -208,7 +261,9 @@ def main():
|
|
| 208 |
status_text.markdown(f"**🔍 Scoring documents... ({i}/{len(candidate_docs)})**")
|
| 209 |
|
| 210 |
# Pair documents with scores
|
| 211 |
-
scored_docs =
|
|
|
|
|
|
|
| 212 |
|
| 213 |
# Clear sentiment model from memory
|
| 214 |
del score_pipe
|
|
@@ -242,21 +297,7 @@ def main():
|
|
| 242 |
sampled_docs = scored_docs
|
| 243 |
|
| 244 |
# Build prompt
|
| 245 |
-
messages =
|
| 246 |
-
{"role": "user", "content": f"""
|
| 247 |
-
Generate a well-structured business report based on tweets from twitter/X with sentiment score (0: negative, 1: neutral, 2: positive) that answers Query Question and meets following Requirements.
|
| 248 |
-
**Requirements:**
|
| 249 |
-
- Include an introduction, key insights, and a conclusion.
|
| 250 |
-
- Ensure the analysis is concise and does not cut off abruptly.
|
| 251 |
-
- Summarize major findings without repeating verbatim.
|
| 252 |
-
- Cover both positive and negative aspects, highlighting trends in user sentiment.
|
| 253 |
-
**Query Question:**
|
| 254 |
-
"{query_input}"
|
| 255 |
-
**Tweets with sentiment score:**
|
| 256 |
-
{sampled_docs}
|
| 257 |
-
Please ensure the report is complete and reaches approximately 800 words.
|
| 258 |
-
"""}
|
| 259 |
-
]
|
| 260 |
|
| 261 |
# Create a process function to avoid the Triton registration issue
|
| 262 |
def process_with_gemma(messages):
|
|
@@ -296,8 +337,7 @@ Please ensure the report is complete and reaches approximately 800 words.
|
|
| 296 |
report = "Error generating report. Please try again with fewer tweets."
|
| 297 |
else:
|
| 298 |
# Extract content from successful Gemma result
|
| 299 |
-
report = raw_result
|
| 300 |
-
#extract_assistant_content(raw_result)
|
| 301 |
|
| 302 |
progress_bar.progress(100)
|
| 303 |
status_text.success("**✅ Generation complete!**")
|
|
|
|
| 11 |
import time
|
| 12 |
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
|
| 13 |
|
| 14 |
+
# Retrieve the token from environment variables for huggingface login
|
| 15 |
hf_token = os.environ.get("HF_TOKEN")
|
| 16 |
if not hf_token:
|
| 17 |
st.error("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
| 18 |
st.stop()
|
| 19 |
|
| 20 |
+
# Huggingface login with the token
|
| 21 |
login(token=hf_token)
|
| 22 |
|
| 23 |
# Timer component using HTML and JavaScript
|
|
|
|
| 52 |
# Concise introduction
|
| 53 |
st.write("This model🎰 will score your tweets in your CSV file🗄️ based on their sentiment😀 and generate a report🗟 answering your query question❔ based on those results.")
|
| 54 |
|
| 55 |
+
# Display VRAM status for debug
|
| 56 |
def print_gpu_status(label):
|
| 57 |
if torch.cuda.is_available():
|
| 58 |
allocated = torch.cuda.memory_allocated() / 1024**3
|
|
|
|
| 79 |
if torch.cuda.is_available():
|
| 80 |
torch.cuda.empty_cache()
|
| 81 |
torch.cuda.ipc_collect()
|
| 82 |
+
|
| 83 |
+
# Function to build appropriate prompt for text generation model
|
| 84 |
+
def build_messages(query_input, sampled_docs):
|
| 85 |
+
docs_text = ""
|
| 86 |
+
for idx, doc in enumerate(sampled_docs):
|
| 87 |
+
docs_text += f"Tweet {idx+1} (Sentiment: {doc['sentiment']}): {doc['comment']}\n"
|
| 88 |
+
|
| 89 |
+
system_message = (
|
| 90 |
+
"You are an intelligent assistant. Your task is to generate a comprehensive business report "
|
| 91 |
+
"analyzing the provided tweets with sentiment scores. The report must include an introduction, "
|
| 92 |
+
"key insights, and a conclusion, and should be approximately 800 words long. "
|
| 93 |
+
"IMPORTANT: Do not include any introductory greetings, summary statements, or closing questions. "
|
| 94 |
+
"Output only the final report content."
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
user_content = (
|
| 98 |
+
f"**Tweets**:\n{docs_text}\n\n"
|
| 99 |
+
f"**Query Question**: \"{query_input}\"\n\n"
|
| 100 |
+
"Now, produce only the final report as instructed, without any extra commentary."
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
messages = [
|
| 104 |
+
{"role": "system", "content": system_message},
|
| 105 |
+
{"role": "user", "content": user_content}
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
return messages
|
| 109 |
+
|
| 110 |
+
# A helper to extract the assistant's response
|
| 111 |
+
def extract_assistant_response(output):
|
| 112 |
+
"""
|
| 113 |
+
Extract only the content from the assistant's response.
|
| 114 |
+
Handles nested structure from the pipeline output.
|
| 115 |
+
"""
|
| 116 |
+
try:
|
| 117 |
+
# The output is expected to be a list containing a dict with 'generated_text'
|
| 118 |
+
if isinstance(output, list) and len(output) > 0 and 'generated_text' in output[0]:
|
| 119 |
+
messages = output[0]['generated_text']
|
| 120 |
+
if isinstance(messages, list):
|
| 121 |
+
for message in messages:
|
| 122 |
+
if isinstance(message, dict) and message.get('role') == 'assistant':
|
| 123 |
+
return message.get('content', '')
|
| 124 |
+
# Fallback: try to directly find 'assistant' role in output
|
| 125 |
+
if isinstance(output, list):
|
| 126 |
+
for item in output:
|
| 127 |
+
if isinstance(item, dict) and item.get('role') == 'assistant':
|
| 128 |
+
return item.get('content', '')
|
| 129 |
+
print(f"DEBUG: Could not find assistant response in: {str(output)[:200]}...")
|
| 130 |
+
return ''
|
| 131 |
+
except Exception as e:
|
| 132 |
+
print(f"Error extracting assistant response: {e}")
|
| 133 |
+
return ''
|
| 134 |
|
| 135 |
# Main Function Part:
|
| 136 |
def main():
|
|
|
|
| 190 |
docs_to_summarize.append(doc)
|
| 191 |
docs_indices.append(i)
|
| 192 |
|
| 193 |
+
# If we have documents to summarize, load finetuned summarization model first
|
| 194 |
if docs_to_summarize:
|
| 195 |
status_text.markdown("**📝 Loading summarization model...**")
|
| 196 |
t5_pipe = get_summary_model()
|
|
|
|
| 221 |
except Exception as e:
|
| 222 |
st.warning(f"Error summarizing document {i}: {str(e)}")
|
| 223 |
|
| 224 |
+
# Clear summarization model from memory
|
| 225 |
del t5_pipe
|
| 226 |
import gc
|
| 227 |
gc.collect()
|
|
|
|
| 261 |
status_text.markdown(f"**🔍 Scoring documents... ({i}/{len(candidate_docs)})**")
|
| 262 |
|
| 263 |
# Pair documents with scores
|
| 264 |
+
scored_docs = [{"comment": doc, "sentiment": result.get("score", 1)}
|
| 265 |
+
for doc, result in zip(processed_docs, scored_results)]
|
| 266 |
+
|
| 267 |
|
| 268 |
# Clear sentiment model from memory
|
| 269 |
del score_pipe
|
|
|
|
| 297 |
sampled_docs = scored_docs
|
| 298 |
|
| 299 |
# Build prompt
|
| 300 |
+
messages = build_messages(query_input, sampled_docs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 301 |
|
| 302 |
# Create a process function to avoid the Triton registration issue
|
| 303 |
def process_with_gemma(messages):
|
|
|
|
| 337 |
report = "Error generating report. Please try again with fewer tweets."
|
| 338 |
else:
|
| 339 |
# Extract content from successful Gemma result
|
| 340 |
+
report = extract_assistant_response(raw_result)
|
|
|
|
| 341 |
|
| 342 |
progress_bar.progress(100)
|
| 343 |
status_text.success("**✅ Generation complete!**")
|