Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,110 +1,129 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import nest_asyncio
|
| 3 |
-
nest_asyncio.apply()
|
| 4 |
-
import streamlit as st
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
from
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Retrieve the token from environment variables
|
| 10 |
-
hf_token = os.environ.get("HF_TOKEN")
|
| 11 |
-
if not hf_token:
|
| 12 |
-
st.error("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
| 13 |
-
st.stop()
|
| 14 |
|
| 15 |
# Login with the token
|
| 16 |
-
login(token=hf_token)
|
| 17 |
|
| 18 |
# Initialize session state for timer and results
|
| 19 |
-
if 'result' not in st.session_state:
|
| 20 |
-
st.session_state.result = {}
|
| 21 |
-
if 'timer_started' not in st.session_state:
|
| 22 |
-
st.session_state.timer_started = False
|
| 23 |
-
if 'timer_frozen' not in st.session_state:
|
| 24 |
-
st.session_state.timer_frozen = False
|
| 25 |
|
| 26 |
# Timer component using HTML and JavaScript
|
| 27 |
-
def timer():
|
| 28 |
-
return """
|
| 29 |
-
<div id="timer" style="font-size:16px;color:#666;margin-bottom:10px;">β±οΈ Elapsed: 00:00</div>
|
| 30 |
-
<script>
|
| 31 |
-
(function() {
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
})();
|
| 49 |
-
</script>
|
| 50 |
-
"""
|
| 51 |
|
| 52 |
-
st.set_page_config(page_title="Sentiment & Report Generator", page_icon="π")
|
| 53 |
-
st.header("Sentiment Analysis & Report Generation with Gemma")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
# Load models with caching to avoid reloading on every run
|
| 56 |
-
@st.cache_resource
|
| 57 |
-
def load_models():
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
|
| 64 |
-
# Provide two options for input:
|
| 65 |
-
uploaded_file = st.file_uploader("Upload Review File (
|
| 66 |
user_input = st.text_area("Or, enter your text for sentiment analysis and report generation:")
|
| 67 |
|
| 68 |
-
# If a file is uploaded, override user_input with its contents
|
| 69 |
if uploaded_file is not None:
|
| 70 |
try:
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
except Exception as e:
|
| 73 |
st.error(f"Error reading file: {e}")
|
| 74 |
|
| 75 |
-
if st.button("Generate Report"):
|
| 76 |
-
if not user_input.strip():
|
| 77 |
st.error("Please enter some text!")
|
| 78 |
-
else:
|
| 79 |
-
if not st.session_state.timer_started and not st.session_state.timer_frozen:
|
| 80 |
-
st.session_state.timer_started = True
|
| 81 |
-
html(timer(), height=50)
|
| 82 |
-
status_text = st.empty()
|
| 83 |
-
progress_bar = st.progress(0)
|
| 84 |
-
try:
|
| 85 |
-
# Stage 1: Sentiment Analysis
|
| 86 |
-
status_text.markdown("**π Running sentiment analysis...**")
|
| 87 |
-
progress_bar.progress(0)
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
"
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
| 110 |
progress_bar.empty()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import nest_asyncio
|
| 3 |
+
nest_asyncio.apply()
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from sentence_transformers import CrossEncoder
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
from huggingface_hub import login
|
| 8 |
+
from streamlit.components.v1 import html
|
| 9 |
+
import pandas as pd
|
| 10 |
|
| 11 |
# Retrieve the token from environment variables
|
| 12 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 13 |
+
if not hf_token:
|
| 14 |
+
st.error("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
| 15 |
+
st.stop()
|
| 16 |
|
| 17 |
# Login with the token
|
| 18 |
+
login(token=hf_token)
|
| 19 |
|
| 20 |
# Initialize session state for timer and results
|
| 21 |
+
if 'result' not in st.session_state:
|
| 22 |
+
st.session_state.result = {}
|
| 23 |
+
if 'timer_started' not in st.session_state:
|
| 24 |
+
st.session_state.timer_started = False
|
| 25 |
+
if 'timer_frozen' not in st.session_state:
|
| 26 |
+
st.session_state.timer_frozen = False
|
| 27 |
|
| 28 |
# Timer component using HTML and JavaScript
|
| 29 |
+
def timer():
|
| 30 |
+
return """
|
| 31 |
+
<div id="timer" style="font-size:16px;color:#666;margin-bottom:10px;">β±οΈ Elapsed: 00:00</div>
|
| 32 |
+
<script>
|
| 33 |
+
(function() {
|
| 34 |
+
var start = Date.now();
|
| 35 |
+
var timerElement = document.getElementById('timer');
|
| 36 |
+
localStorage.removeItem("freezeTimer");
|
| 37 |
+
var interval = setInterval(function() {
|
| 38 |
+
if(localStorage.getItem("freezeTimer") === "true"){
|
| 39 |
+
clearInterval(interval);
|
| 40 |
+
timerElement.style.color = '#00cc00';
|
| 41 |
+
return;
|
| 42 |
+
}
|
| 43 |
+
var elapsed = Date.now() - start;
|
| 44 |
+
var minutes = Math.floor(elapsed / 60000);
|
| 45 |
+
var seconds = Math.floor((elapsed % 60000) / 1000);
|
| 46 |
+
timerElement.innerHTML = 'β±οΈ Elapsed: ' +
|
| 47 |
+
(minutes < 10 ? '0' : '') + minutes + ':' +
|
| 48 |
+
(seconds < 10 ? '0' : '') + seconds;
|
| 49 |
+
}, 1000);
|
| 50 |
+
})();
|
| 51 |
+
</script>
|
| 52 |
+
"""
|
| 53 |
|
| 54 |
+
st.set_page_config(page_title="Sentiment & Report Generator", page_icon="π")
|
| 55 |
+
st.header("Sentiment Analysis & Report Generation with Gemma")
|
| 56 |
+
|
| 57 |
+
# Introduction for the Hugging Face interface
|
| 58 |
+
st.write("""
|
| 59 |
+
Welcome to the Sentiment Analysis & Report Generator app!
|
| 60 |
+
This tool leverages Hugging Face's models to analyze the sentiment of your text and generate a detailed report explaining the key insights.
|
| 61 |
+
You can either paste your review text directly into the text area or upload a CSV file containing your reviews.
|
| 62 |
+
""")
|
| 63 |
|
| 64 |
# Load models with caching to avoid reloading on every run
|
| 65 |
+
@st.cache_resource
|
| 66 |
+
def load_models():
|
| 67 |
+
# Load the sentiment model (CrossEncoder) for ranking sentiment labels.
|
| 68 |
+
sentiment_model = CrossEncoder("mixedbread-ai/mxbai-rerank-base-v1")
|
| 69 |
+
# Load the Gemma text generation pipeline.
|
| 70 |
+
gemma_pipe = pipeline("text-generation", model="google/gemma-3-1b-it", use_auth_token=hf_token)
|
| 71 |
+
return sentiment_model, gemma_pipe
|
| 72 |
|
| 73 |
+
sentiment_model, gemma_pipe = load_models()
|
| 74 |
|
| 75 |
+
# Provide two options for input: file upload (CSV) or text area
|
| 76 |
+
uploaded_file = st.file_uploader("Upload Review File (CSV format)", type=["csv"])
|
| 77 |
user_input = st.text_area("Or, enter your text for sentiment analysis and report generation:")
|
| 78 |
|
|
|
|
| 79 |
if uploaded_file is not None:
|
| 80 |
try:
|
| 81 |
+
# Read the CSV file; if a column named 'review' exists, use it.
|
| 82 |
+
df = pd.read_csv(uploaded_file)
|
| 83 |
+
if 'review' in df.columns:
|
| 84 |
+
user_input = " ".join(df['review'].astype(str).tolist())
|
| 85 |
+
else:
|
| 86 |
+
# Otherwise, join all text from the first column.
|
| 87 |
+
user_input = " ".join(df.iloc[:, 0].astype(str).tolist())
|
| 88 |
except Exception as e:
|
| 89 |
st.error(f"Error reading file: {e}")
|
| 90 |
|
| 91 |
+
if st.button("Generate Report"):
|
| 92 |
+
if not user_input.strip():
|
| 93 |
st.error("Please enter some text!")
|
| 94 |
+
else:
|
| 95 |
+
if not st.session_state.timer_started and not st.session_state.timer_frozen:
|
| 96 |
+
st.session_state.timer_started = True
|
| 97 |
+
html(timer(), height=50)
|
| 98 |
+
status_text = st.empty()
|
| 99 |
+
progress_bar = st.progress(0)
|
| 100 |
+
try:
|
| 101 |
+
# Stage 1: Sentiment Analysis using CrossEncoder ranking
|
| 102 |
+
status_text.markdown("**π Running sentiment analysis...**")
|
| 103 |
+
progress_bar.progress(0)
|
| 104 |
+
# Use sentiment analysis as ranking over sentiment labels.
|
| 105 |
+
labels = ["positive", "neutral", "negative"]
|
| 106 |
+
sentiment_result = sentiment_model.rank(user_input, labels, return_documents=True, top_k=1)
|
| 107 |
+
progress_bar.progress(50)
|
| 108 |
+
|
| 109 |
+
# Stage 2: Generate Report using Gemma
|
| 110 |
+
status_text.markdown("**π Generating report with Gemma...**")
|
| 111 |
+
prompt = f"""
|
| 112 |
+
Generate a detailed report based on the following analysis.
|
| 113 |
+
Original text:
|
| 114 |
+
"{user_input}"
|
| 115 |
+
Sentiment analysis result:
|
| 116 |
+
{sentiment_result}
|
| 117 |
+
Please provide a concise summary report explaining the sentiment and key insights.
|
| 118 |
+
"""
|
| 119 |
+
report = gemma_pipe(prompt, max_length=200)
|
| 120 |
+
progress_bar.progress(100)
|
| 121 |
+
status_text.success("**β
Generation complete!**")
|
| 122 |
+
html("<script>localStorage.setItem('freezeTimer', 'true');</script>", height=0)
|
| 123 |
+
st.session_state.timer_frozen = True
|
| 124 |
+
st.write("**Sentiment Analysis Result:**", sentiment_result)
|
| 125 |
+
st.write("**Generated Report:**", report[0]['generated_text'])
|
| 126 |
+
except Exception as e:
|
| 127 |
+
html("<script>document.getElementById('timer').remove();</script>")
|
| 128 |
+
status_text.error(f"**β Error:** {str(e)}")
|
| 129 |
progress_bar.empty()
|