frankai98 commited on
Commit
cc58a52
·
verified ·
1 Parent(s): b85f4a1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -20
app.py CHANGED
@@ -102,8 +102,10 @@ Your task:
102
  Now produce the final report only, without reiterating these instructions or the query."""
103
 
104
  messages = [
105
- {"role": "system", "content": system_message},
106
- {"role": "user", "content": user_content}
 
 
107
  ]
108
 
109
  return messages
@@ -263,30 +265,15 @@ def main():
263
  else:
264
  sampled_docs = scored_docs
265
 
266
- prompt = [
267
- {"role": "user", "content": f"""
268
- Generate a well-structured business report based on tweets from twitter/X with sentiment that answers Query Question and meets following Requirements.
269
- **Requirements:**
270
- - Include an introduction, key insights, and a conclusion.
271
- - Ensure the analysis is concise and does not cut off abruptly.
272
- - Summarize major findings without repeating verbatim.
273
- - Cover both positive and negative aspects, highlighting trends in user sentiment.
274
- **Query Question:**
275
- "{query_input}"
276
- **Tweets with sentiment score:**
277
- {sampled_docs}
278
- Please ensure the report is complete and reaches approximately 300 words.
279
- """}
280
- ]
281
 
282
  def process_with_gemma(prompt):
283
  try:
284
- # tokenizer = AutoTokenizer.from_pretrained("unsloth/gemma-3-1b-it")
285
  pipe = pipeline(
286
  "text-generation",
287
  model="unsloth/gemma-3-1b-it",
288
- device=0 if torch.cuda.is_available() else -1,
289
- # tokenizer=tokenizer,
290
  )
291
  result = pipe(prompt, max_new_tokens=256, repetition_penalty=1.2, do_sample=True, temperature=0.5, return_full_text=False)
292
  return result, None
 
102
  Now produce the final report only, without reiterating these instructions or the query."""
103
 
104
  messages = [
105
+ [
106
+ {"role": "system", "content": [{"type": "text", "text": system_message},]},
107
+ {"role": "user", "content": [{"type": "text", "text": user_content},]},
108
+ ],
109
  ]
110
 
111
  return messages
 
265
  else:
266
  sampled_docs = scored_docs
267
 
268
+ prompt = build_prompt(query_input, sampled_docs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
 
270
  def process_with_gemma(prompt):
271
  try:
 
272
  pipe = pipeline(
273
  "text-generation",
274
  model="unsloth/gemma-3-1b-it",
275
+ device="cuda" if torch.cuda.is_available() else -1,
276
+ torch_dtype=torch.bfloat16,
277
  )
278
  result = pipe(prompt, max_new_tokens=256, repetition_penalty=1.2, do_sample=True, temperature=0.5, return_full_text=False)
279
  return result, None