Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,13 +8,13 @@ from streamlit.components.v1 import html
|
|
| 8 |
import pandas as pd
|
| 9 |
|
| 10 |
# Retrieve the token from environment variables
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
|
| 16 |
# Login with the token
|
| 17 |
-
login(token=
|
| 18 |
|
| 19 |
# Initialize session state for timer and results
|
| 20 |
if 'result' not in st.session_state:
|
|
@@ -56,14 +56,14 @@ st.header("Sentiment Analysis & Report Generation with Gemma")
|
|
| 56 |
# Introduction for the Hugging Face interface
|
| 57 |
st.write("""
|
| 58 |
Welcome to the Sentiment Analysis & Report Generator app!
|
| 59 |
-
This tool leverages Hugging Face’s models to analyze
|
| 60 |
You can either paste your review text directly into the text area or upload a CSV file containing your reviews.
|
| 61 |
""")
|
| 62 |
|
| 63 |
# Load models with caching to avoid reloading on every run
|
| 64 |
@st.cache_resource
|
| 65 |
def load_models():
|
| 66 |
-
# Load the
|
| 67 |
sentiment_pipe = pipeline("text-classification", model="mixedbread-ai/mxbai-rerank-base-v1")
|
| 68 |
# Load the Gemma text generation pipeline.
|
| 69 |
gemma_pipe = pipeline("text-generation", model="google/gemma-3-1b-it", use_auth_token=hf_token)
|
|
@@ -73,7 +73,7 @@ sentiment_pipe, gemma_pipe = load_models()
|
|
| 73 |
|
| 74 |
# Provide two options for input: file upload (CSV) or text area
|
| 75 |
uploaded_file = st.file_uploader("Upload Review File (CSV format)", type=["csv"])
|
| 76 |
-
user_input = st.text_area("Or, enter your text for
|
| 77 |
|
| 78 |
if uploaded_file is not None:
|
| 79 |
try:
|
|
@@ -97,28 +97,28 @@ if st.button("Generate Report"):
|
|
| 97 |
status_text = st.empty()
|
| 98 |
progress_bar = st.progress(0)
|
| 99 |
try:
|
| 100 |
-
# Stage 1:
|
| 101 |
-
status_text.markdown("**🔍 Running
|
| 102 |
progress_bar.progress(0)
|
| 103 |
-
|
| 104 |
progress_bar.progress(50)
|
| 105 |
|
| 106 |
-
# Stage 2: Generate Report using Gemma
|
| 107 |
status_text.markdown("**📝 Generating report with Gemma...**")
|
| 108 |
prompt = f"""
|
| 109 |
Generate a detailed report based on the following analysis.
|
| 110 |
Original text:
|
| 111 |
"{user_input}"
|
| 112 |
-
|
| 113 |
-
{
|
| 114 |
-
Please provide a concise summary report explaining the
|
| 115 |
"""
|
| 116 |
report = gemma_pipe(prompt, max_length=200)
|
| 117 |
progress_bar.progress(100)
|
| 118 |
status_text.success("**✅ Generation complete!**")
|
| 119 |
html("<script>localStorage.setItem('freezeTimer', 'true');</script>", height=0)
|
| 120 |
st.session_state.timer_frozen = True
|
| 121 |
-
st.write("**
|
| 122 |
st.write("**Generated Report:**", report[0]['generated_text'])
|
| 123 |
except Exception as e:
|
| 124 |
html("<script>document.getElementById('timer').remove();</script>")
|
|
|
|
| 8 |
import pandas as pd
|
| 9 |
|
| 10 |
# Retrieve the token from environment variables
|
| 11 |
+
hf_token = os.environ.get("HF_TOKEN")
|
| 12 |
+
if not hf_token:
|
| 13 |
+
st.error("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
|
| 14 |
+
st.stop()
|
| 15 |
|
| 16 |
# Login with the token
|
| 17 |
+
login(token=hf_token)
|
| 18 |
|
| 19 |
# Initialize session state for timer and results
|
| 20 |
if 'result' not in st.session_state:
|
|
|
|
| 56 |
# Introduction for the Hugging Face interface
|
| 57 |
st.write("""
|
| 58 |
Welcome to the Sentiment Analysis & Report Generator app!
|
| 59 |
+
This tool leverages Hugging Face’s models to analyze your text and generate a detailed report explaining key insights.
|
| 60 |
You can either paste your review text directly into the text area or upload a CSV file containing your reviews.
|
| 61 |
""")
|
| 62 |
|
| 63 |
# Load models with caching to avoid reloading on every run
|
| 64 |
@st.cache_resource
|
| 65 |
def load_models():
|
| 66 |
+
# Load the "reranker" model via pipeline.
|
| 67 |
sentiment_pipe = pipeline("text-classification", model="mixedbread-ai/mxbai-rerank-base-v1")
|
| 68 |
# Load the Gemma text generation pipeline.
|
| 69 |
gemma_pipe = pipeline("text-generation", model="google/gemma-3-1b-it", use_auth_token=hf_token)
|
|
|
|
| 73 |
|
| 74 |
# Provide two options for input: file upload (CSV) or text area
|
| 75 |
uploaded_file = st.file_uploader("Upload Review File (CSV format)", type=["csv"])
|
| 76 |
+
user_input = st.text_area("Or, enter your text for analysis and report generation:")
|
| 77 |
|
| 78 |
if uploaded_file is not None:
|
| 79 |
try:
|
|
|
|
| 97 |
status_text = st.empty()
|
| 98 |
progress_bar = st.progress(0)
|
| 99 |
try:
|
| 100 |
+
# Stage 1: Reranking analysis using the sentiment pipeline
|
| 101 |
+
status_text.markdown("**🔍 Running reranking analysis...**")
|
| 102 |
progress_bar.progress(0)
|
| 103 |
+
rerank_result = sentiment_pipe(user_input)
|
| 104 |
progress_bar.progress(50)
|
| 105 |
|
| 106 |
+
# Stage 2: Generate Report using Gemma, using the rerank result
|
| 107 |
status_text.markdown("**📝 Generating report with Gemma...**")
|
| 108 |
prompt = f"""
|
| 109 |
Generate a detailed report based on the following analysis.
|
| 110 |
Original text:
|
| 111 |
"{user_input}"
|
| 112 |
+
Reranking analysis result:
|
| 113 |
+
{rerank_result}
|
| 114 |
+
Please provide a concise summary report explaining the insights derived from this analysis.
|
| 115 |
"""
|
| 116 |
report = gemma_pipe(prompt, max_length=200)
|
| 117 |
progress_bar.progress(100)
|
| 118 |
status_text.success("**✅ Generation complete!**")
|
| 119 |
html("<script>localStorage.setItem('freezeTimer', 'true');</script>", height=0)
|
| 120 |
st.session_state.timer_frozen = True
|
| 121 |
+
st.write("**Reranking Analysis Result:**", rerank_result)
|
| 122 |
st.write("**Generated Report:**", report[0]['generated_text'])
|
| 123 |
except Exception as e:
|
| 124 |
html("<script>document.getElementById('timer').remove();</script>")
|