Spaces:
Running
Running
| # Copyright (C) 2021-2025, François-Guillaume Fernandez. | |
| # This program is licensed under the Apache License 2.0. | |
| # See LICENSE or go to <https://www.apache.org/licenses/LICENSE-2.0> for full license details. | |
| from io import BytesIO | |
| import matplotlib.pyplot as plt | |
| import requests | |
| import streamlit as st | |
| import torch | |
| from PIL import Image | |
| from torchvision import models | |
| from torchvision.transforms.functional import normalize, resize, to_pil_image, to_tensor | |
| from torchcam import methods | |
| from torchcam.methods._utils import locate_candidate_layer | |
| from torchcam.utils import overlay_mask | |
| CAM_METHODS = [ | |
| "CAM", | |
| "GradCAM", | |
| "GradCAMpp", | |
| "SmoothGradCAMpp", | |
| "ScoreCAM", | |
| "SSCAM", | |
| "ISCAM", | |
| "XGradCAM", | |
| "LayerCAM", | |
| ] | |
| TV_MODELS = [ | |
| "resnet18", | |
| "resnet50", | |
| "mobilenet_v3_small", | |
| "mobilenet_v3_large", | |
| "regnet_y_400mf", | |
| "convnext_tiny", | |
| "convnext_small", | |
| ] | |
| LABEL_MAP = requests.get( | |
| "https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json", | |
| timeout=10, | |
| ).json() | |
| def main(): | |
| # Wide mode | |
| st.set_page_config(page_title="TorchCAM - Class activation explorer", layout="wide") | |
| # Designing the interface | |
| st.title("TorchCAM: class activation explorer") | |
| # For newline | |
| st.write("\n") | |
| # Set the columns | |
| cols = st.columns((1, 1, 1)) | |
| cols[0].header("Input image") | |
| cols[1].header("Raw CAM") | |
| cols[-1].header("Overlayed CAM") | |
| # Sidebar | |
| # File selection | |
| st.sidebar.title("Input selection") | |
| # Choose your own image | |
| uploaded_file = st.sidebar.file_uploader("Upload files", type=["png", "jpeg", "jpg"]) | |
| if uploaded_file is not None: | |
| img = Image.open(BytesIO(uploaded_file.read()), mode="r").convert("RGB") | |
| cols[0].image(img, use_container_width=True) | |
| # Model selection | |
| st.sidebar.title("Setup") | |
| tv_model = st.sidebar.selectbox( | |
| "Classification model", | |
| TV_MODELS, | |
| help="Supported models from Torchvision", | |
| ) | |
| default_layer = "" | |
| if tv_model is not None: | |
| with st.spinner("Loading model..."): | |
| model = models.__dict__[tv_model](pretrained=True).eval() | |
| default_layer = locate_candidate_layer(model, (3, 224, 224)) | |
| if torch.cuda.is_available(): | |
| model = model.cuda() | |
| target_layer = st.sidebar.text_input( | |
| "Target layer", | |
| default_layer, | |
| help='If you want to target several layers, add a "+" separator (e.g. "layer3+layer4")', | |
| ) | |
| cam_method = st.sidebar.selectbox( | |
| "CAM method", | |
| CAM_METHODS, | |
| help="The way your class activation map will be computed", | |
| ) | |
| if cam_method is not None: | |
| cam_extractor = methods.__dict__[cam_method]( | |
| model, | |
| target_layer=[s.strip() for s in target_layer.split("+")] if len(target_layer) > 0 else None, | |
| ) | |
| class_choices = [f"{idx + 1} - {class_name}" for idx, class_name in enumerate(LABEL_MAP)] | |
| class_selection = st.sidebar.selectbox("Class selection", ["Predicted class (argmax)", *class_choices]) | |
| # For newline | |
| st.sidebar.write("\n") | |
| if st.sidebar.button("Compute CAM"): | |
| if uploaded_file is None: | |
| st.sidebar.error("Please upload an image first") | |
| else: | |
| with st.spinner("Analyzing..."): | |
| # Preprocess image | |
| img_tensor = normalize( | |
| to_tensor(resize(img, (224, 224))), | |
| [0.485, 0.456, 0.406], | |
| [0.229, 0.224, 0.225], | |
| ) | |
| if torch.cuda.is_available(): | |
| img_tensor = img_tensor.cuda() | |
| # Forward the image to the model | |
| out = model(img_tensor.unsqueeze(0)) | |
| # Select the target class | |
| if class_selection == "Predicted class (argmax)": | |
| class_idx = out.squeeze(0).argmax().item() | |
| else: | |
| class_idx = LABEL_MAP.index(class_selection.rpartition(" - ")[-1]) | |
| # Retrieve the CAM | |
| act_maps = cam_extractor(class_idx, out) | |
| # Fuse the CAMs if there are several | |
| activation_map = act_maps[0] if len(act_maps) == 1 else cam_extractor.fuse_cams(act_maps) | |
| # Plot the raw heatmap | |
| fig, ax = plt.subplots() | |
| ax.imshow(activation_map.squeeze(0).cpu().numpy()) | |
| ax.axis("off") | |
| cols[1].pyplot(fig) | |
| # Overlayed CAM | |
| fig, ax = plt.subplots() | |
| result = overlay_mask(img, to_pil_image(activation_map, mode="F"), alpha=0.5) | |
| ax.imshow(result) | |
| ax.axis("off") | |
| cols[-1].pyplot(fig) | |
| if __name__ == "__main__": | |
| main() | |