Spaces:
Running
Running
| # 🔄 Text Paraphraser | CPU-only HF Space | |
| import gradio as gr | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForSeq2SeqLM, | |
| pipeline, | |
| ) | |
| # 1️⃣ Load model + slow tokenizer explicitly | |
| MODEL_ID = "Vamsi/T5_Paraphrase_Paws" | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, use_fast=False) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID) | |
| # 2️⃣ Create paraphrase pipeline with our slow tokenizer | |
| paraphraser = pipeline( | |
| "text2text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| device=-1, # CPU | |
| ) | |
| def paraphrase(text: str, num_variations: int): | |
| if not text.strip(): | |
| return [] | |
| prompt = "paraphrase: " + text.strip() | |
| outputs = paraphraser( | |
| prompt, | |
| max_length=128, | |
| num_return_sequences=num_variations, | |
| do_sample=True, | |
| top_k=120, | |
| top_p=0.95 | |
| ) | |
| return [out["generated_text"].strip() for out in outputs] | |
| with gr.Blocks(title="🔄 Text Paraphraser") as demo: | |
| gr.Markdown( | |
| "# 🔄 Text Paraphraser\n" | |
| "Enter a sentence and get multiple alternative rewrites—all on CPU." | |
| ) | |
| with gr.Row(): | |
| input_text = gr.Textbox( | |
| label="Input Sentence", | |
| placeholder="Type something to paraphrase…", | |
| lines=3 | |
| ) | |
| variations = gr.Slider( | |
| 1, 5, value=3, step=1, | |
| label="Number of Variations" | |
| ) | |
| run_btn = gr.Button("Paraphrase 🔁", variant="primary") | |
| output_df = gr.Dataframe( | |
| label="Paraphrases", | |
| headers=[f"Variant #{i}" for i in range(1, 6)], | |
| datatype=["str"]*5, | |
| interactive=False, | |
| row_count=1 | |
| ) | |
| def format_for_dataframe(results): | |
| # Pad out to 5 columns | |
| variants = results + [""]*(5 - len(results)) | |
| return [variants] | |
| run_btn.click( | |
| fn=lambda text, n: format_for_dataframe(paraphrase(text, n)), | |
| inputs=[input_text, variations], | |
| outputs=output_df | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch(server_name="0.0.0.0") | |