Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- bar_plot_demo.py +4 -7
- data.py +2 -2
- line_plot_demo.py +4 -7
- requirements.txt +2 -2
- run.ipynb +1 -1
- run.py +0 -1
- scatter_plot_demo.py +4 -7
bar_plot_demo.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
from data import temp_sensor_data, food_rating_data
|
| 4 |
|
| 5 |
with gr.Blocks() as bar_plots:
|
|
@@ -25,17 +24,16 @@ with gr.Blocks() as bar_plots:
|
|
| 25 |
|
| 26 |
time_graphs = [temp_by_time, temp_by_time_location]
|
| 27 |
group_by.change(
|
| 28 |
-
lambda group: [gr.BarPlot(x_bin=None if group == "None" else group)] * len(time_graphs),
|
| 29 |
-
group_by,
|
| 30 |
time_graphs
|
| 31 |
)
|
| 32 |
aggregate.change(
|
| 33 |
-
lambda aggregate: [gr.BarPlot(y_aggregate=aggregate)] * len(time_graphs),
|
| 34 |
-
aggregate,
|
| 35 |
time_graphs
|
| 36 |
)
|
| 37 |
|
| 38 |
-
|
| 39 |
def rescale(select: gr.SelectData):
|
| 40 |
return select.index
|
| 41 |
rescale_evt = gr.on([plot.select for plot in time_graphs], rescale, None, [start, end])
|
|
@@ -72,6 +70,5 @@ with gr.Blocks() as bar_plots:
|
|
| 72 |
color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
|
| 73 |
)
|
| 74 |
|
| 75 |
-
|
| 76 |
if __name__ == "__main__":
|
| 77 |
bar_plots.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from data import temp_sensor_data, food_rating_data
|
| 3 |
|
| 4 |
with gr.Blocks() as bar_plots:
|
|
|
|
| 24 |
|
| 25 |
time_graphs = [temp_by_time, temp_by_time_location]
|
| 26 |
group_by.change(
|
| 27 |
+
lambda group: [gr.BarPlot(x_bin=None if group == "None" else group)] * len(time_graphs),
|
| 28 |
+
group_by,
|
| 29 |
time_graphs
|
| 30 |
)
|
| 31 |
aggregate.change(
|
| 32 |
+
lambda aggregate: [gr.BarPlot(y_aggregate=aggregate)] * len(time_graphs),
|
| 33 |
+
aggregate,
|
| 34 |
time_graphs
|
| 35 |
)
|
| 36 |
|
|
|
|
| 37 |
def rescale(select: gr.SelectData):
|
| 38 |
return select.index
|
| 39 |
rescale_evt = gr.on([plot.select for plot in time_graphs], rescale, None, [start, end])
|
|
|
|
| 70 |
color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
|
| 71 |
)
|
| 72 |
|
|
|
|
| 73 |
if __name__ == "__main__":
|
| 74 |
bar_plots.launch()
|
data.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import pandas as pd
|
| 2 |
-
from random import randint,
|
| 3 |
|
| 4 |
temp_sensor_data = pd.DataFrame(
|
| 5 |
{
|
|
@@ -17,4 +17,4 @@ food_rating_data = pd.DataFrame(
|
|
| 17 |
"price": [randint(10, 50) + 4 * (i % 3) for i in range(100)],
|
| 18 |
"wait": [random() for i in range(100)],
|
| 19 |
}
|
| 20 |
-
)
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
+
from random import randint, random
|
| 3 |
|
| 4 |
temp_sensor_data = pd.DataFrame(
|
| 5 |
{
|
|
|
|
| 17 |
"price": [randint(10, 50) + 4 * (i % 3) for i in range(100)],
|
| 18 |
"wait": [random() for i in range(100)],
|
| 19 |
}
|
| 20 |
+
)
|
line_plot_demo.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
from data import temp_sensor_data, food_rating_data
|
| 4 |
|
| 5 |
with gr.Blocks() as line_plots:
|
|
@@ -25,17 +24,16 @@ with gr.Blocks() as line_plots:
|
|
| 25 |
|
| 26 |
time_graphs = [temp_by_time, temp_by_time_location]
|
| 27 |
group_by.change(
|
| 28 |
-
lambda group: [gr.LinePlot(x_bin=None if group == "None" else group)] * len(time_graphs),
|
| 29 |
-
group_by,
|
| 30 |
time_graphs
|
| 31 |
)
|
| 32 |
aggregate.change(
|
| 33 |
-
lambda aggregate: [gr.LinePlot(y_aggregate=aggregate)] * len(time_graphs),
|
| 34 |
-
aggregate,
|
| 35 |
time_graphs
|
| 36 |
)
|
| 37 |
|
| 38 |
-
|
| 39 |
def rescale(select: gr.SelectData):
|
| 40 |
return select.index
|
| 41 |
rescale_evt = gr.on([plot.select for plot in time_graphs], rescale, None, [start, end])
|
|
@@ -64,6 +62,5 @@ with gr.Blocks() as line_plots:
|
|
| 64 |
color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
|
| 65 |
)
|
| 66 |
|
| 67 |
-
|
| 68 |
if __name__ == "__main__":
|
| 69 |
line_plots.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from data import temp_sensor_data, food_rating_data
|
| 3 |
|
| 4 |
with gr.Blocks() as line_plots:
|
|
|
|
| 24 |
|
| 25 |
time_graphs = [temp_by_time, temp_by_time_location]
|
| 26 |
group_by.change(
|
| 27 |
+
lambda group: [gr.LinePlot(x_bin=None if group == "None" else group)] * len(time_graphs),
|
| 28 |
+
group_by,
|
| 29 |
time_graphs
|
| 30 |
)
|
| 31 |
aggregate.change(
|
| 32 |
+
lambda aggregate: [gr.LinePlot(y_aggregate=aggregate)] * len(time_graphs),
|
| 33 |
+
aggregate,
|
| 34 |
time_graphs
|
| 35 |
)
|
| 36 |
|
|
|
|
| 37 |
def rescale(select: gr.SelectData):
|
| 38 |
return select.index
|
| 39 |
rescale_evt = gr.on([plot.select for plot in time_graphs], rescale, None, [start, end])
|
|
|
|
| 62 |
color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
|
| 63 |
)
|
| 64 |
|
|
|
|
| 65 |
if __name__ == "__main__":
|
| 66 |
line_plots.launch()
|
requirements.txt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
-
gradio-client @ git+https://github.com/gradio-app/gradio@
|
| 2 |
-
https://gradio-builds.s3.amazonaws.com/
|
| 3 |
vega_datasets
|
|
|
|
| 1 |
+
gradio-client @ git+https://github.com/gradio-app/gradio@9b42ba8f1006c05d60a62450d3036ce0d6784f86#subdirectory=client/python
|
| 2 |
+
https://gradio-builds.s3.amazonaws.com/9b42ba8f1006c05d60a62450d3036ce0d6784f86/gradio-4.39.0-py3-none-any.whl
|
| 3 |
vega_datasets
|
run.ipynb
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: native_plots"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/bar_plot_demo.py\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/data.py\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/line_plot_demo.py\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/scatter_plot_demo.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "from scatter_plot_demo import scatter_plots\n", "from line_plot_demo import line_plots\n", "from bar_plot_demo import bar_plots\n", "\n", "
|
|
|
|
| 1 |
+
{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: native_plots"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio vega_datasets"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/bar_plot_demo.py\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/data.py\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/line_plot_demo.py\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/native_plots/scatter_plot_demo.py"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import gradio as gr\n", "\n", "from scatter_plot_demo import scatter_plots\n", "from line_plot_demo import line_plots\n", "from bar_plot_demo import bar_plots\n", "\n", "with gr.Blocks() as demo:\n", " with gr.Tabs():\n", " with gr.TabItem(\"Line Plot\"):\n", " line_plots.render()\n", " with gr.TabItem(\"Scatter Plot\"):\n", " scatter_plots.render()\n", " with gr.TabItem(\"Bar Plot\"):\n", " bar_plots.render()\n", "\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}
|
run.py
CHANGED
|
@@ -4,7 +4,6 @@ from scatter_plot_demo import scatter_plots
|
|
| 4 |
from line_plot_demo import line_plots
|
| 5 |
from bar_plot_demo import bar_plots
|
| 6 |
|
| 7 |
-
|
| 8 |
with gr.Blocks() as demo:
|
| 9 |
with gr.Tabs():
|
| 10 |
with gr.TabItem("Line Plot"):
|
|
|
|
| 4 |
from line_plot_demo import line_plots
|
| 5 |
from bar_plot_demo import bar_plots
|
| 6 |
|
|
|
|
| 7 |
with gr.Blocks() as demo:
|
| 8 |
with gr.Tabs():
|
| 9 |
with gr.TabItem("Line Plot"):
|
scatter_plot_demo.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
from data import temp_sensor_data, food_rating_data
|
| 4 |
|
| 5 |
with gr.Blocks() as scatter_plots:
|
|
@@ -25,17 +24,16 @@ with gr.Blocks() as scatter_plots:
|
|
| 25 |
|
| 26 |
time_graphs = [temp_by_time, temp_by_time_location]
|
| 27 |
group_by.change(
|
| 28 |
-
lambda group: [gr.ScatterPlot(x_bin=None if group == "None" else group)] * len(time_graphs),
|
| 29 |
-
group_by,
|
| 30 |
time_graphs
|
| 31 |
)
|
| 32 |
aggregate.change(
|
| 33 |
-
lambda aggregate: [gr.ScatterPlot(y_aggregate=aggregate)] * len(time_graphs),
|
| 34 |
-
aggregate,
|
| 35 |
time_graphs
|
| 36 |
)
|
| 37 |
|
| 38 |
-
|
| 39 |
# def rescale(select: gr.SelectData):
|
| 40 |
# return select.index
|
| 41 |
# rescale_evt = gr.on([plot.select for plot in time_graphs], rescale, None, [start, end])
|
|
@@ -66,6 +64,5 @@ with gr.Blocks() as scatter_plots:
|
|
| 66 |
# color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
|
| 67 |
)
|
| 68 |
|
| 69 |
-
|
| 70 |
if __name__ == "__main__":
|
| 71 |
scatter_plots.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from data import temp_sensor_data, food_rating_data
|
| 3 |
|
| 4 |
with gr.Blocks() as scatter_plots:
|
|
|
|
| 24 |
|
| 25 |
time_graphs = [temp_by_time, temp_by_time_location]
|
| 26 |
group_by.change(
|
| 27 |
+
lambda group: [gr.ScatterPlot(x_bin=None if group == "None" else group)] * len(time_graphs),
|
| 28 |
+
group_by,
|
| 29 |
time_graphs
|
| 30 |
)
|
| 31 |
aggregate.change(
|
| 32 |
+
lambda aggregate: [gr.ScatterPlot(y_aggregate=aggregate)] * len(time_graphs),
|
| 33 |
+
aggregate,
|
| 34 |
time_graphs
|
| 35 |
)
|
| 36 |
|
|
|
|
| 37 |
# def rescale(select: gr.SelectData):
|
| 38 |
# return select.index
|
| 39 |
# rescale_evt = gr.on([plot.select for plot in time_graphs], rescale, None, [start, end])
|
|
|
|
| 64 |
# color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"},
|
| 65 |
)
|
| 66 |
|
|
|
|
| 67 |
if __name__ == "__main__":
|
| 68 |
scatter_plots.launch()
|