Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import torch | |
| from transformers import pipeline | |
| from transformers import AutoTokenizer, AutoModelForCausalLM | |
| # , BitsAndBytesConfig | |
| # quantization_config = BitsAndBytesConfig(load_in_4bit=True) | |
| model_name = "masakhane/zephyr-7b-gemma-sft-african-alpaca" | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| pipe = pipeline("text-generation", model=model,tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto") | |
| # import torch | |
| # from transformers import pipeline | |
| # pipe = pipeline("text-generation", model="masakhane/zephyr-7b-gemma-sft-african-alpaca", torch_dtype=torch.bfloat16, device_map="auto") | |
| # We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating | |
| # messages = [ | |
| # { | |
| # "role": "system", | |
| # "content": "You are a friendly chatbot who answewrs question in given language", | |
| # }, | |
| # {"role": "user", "content": "what is the 3 biggest countrys in Africa?"}, | |
| # ] | |
| # prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| # outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) | |
| # print(outputs[0]["generated_text"]) | |
| if 'messages' not in st.session_state: | |
| st.session_state.messages = [ | |
| { | |
| "role": "system", | |
| "content": "You are a friendly chatbot who answewrs question in given language", | |
| }, | |
| ] | |
| def ask_model(question): | |
| # Placeholder for model interaction logic | |
| # You would replace this with actual code to query the model | |
| st.session_state.messages.append({"role": "user", "content": f"{question}"}) | |
| prompt = pipe.tokenizer.apply_chat_template(st.session_state.messages, tokenize=False, add_generation_prompt=True) | |
| outputs = pipe(prompt, max_new_tokens=1000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) | |
| print(outputs[0]["generated_text"].split("<|assistant|>")[-1]) | |
| st.session_state.messages.append({"role": "assistant", "content": f"{outputs[0]['generated_text'].split('<|assistant|>')[-1]}"}) | |
| return st.session_state.messages | |
| st.title('LLM Interaction Interface') | |
| user_input = st.text_input("Ask a question:") | |
| if user_input: | |
| # This function is supposed to send the question to the LLM and get the response | |
| response = ask_model(user_input) | |
| st.text_area("Response:", value=response[-1]['content'], height=300, max_chars=None, help=None) | |
| st.json({'value':response},expanded=False) | |