Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
| 4 |
+
|
| 5 |
+
# Load the GPT-2 tokenizer and model
|
| 6 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 7 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
| 8 |
+
|
| 9 |
+
# Set the maximum length of generated text
|
| 10 |
+
max_length = 200
|
| 11 |
+
|
| 12 |
+
# Define a function to generate text
|
| 13 |
+
def generate_text(prompt):
|
| 14 |
+
# Encode the prompt
|
| 15 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
| 16 |
+
|
| 17 |
+
# Generate text
|
| 18 |
+
output = model.generate(
|
| 19 |
+
input_ids=input_ids,
|
| 20 |
+
max_length=max_length,
|
| 21 |
+
num_beams=5,
|
| 22 |
+
no_repeat_ngram_size=2,
|
| 23 |
+
early_stopping=True
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Decode the generated text
|
| 27 |
+
text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 28 |
+
|
| 29 |
+
return text
|
| 30 |
+
|
| 31 |
+
# Set up the Streamlit app
|
| 32 |
+
st.title("GPT-2 Text Generator")
|
| 33 |
+
|
| 34 |
+
# Add a text input widget for the user to enter a prompt
|
| 35 |
+
prompt = st.text_input("Enter a prompt:")
|
| 36 |
+
|
| 37 |
+
# When the user clicks the "Generate" button, generate text
|
| 38 |
+
if st.button("Generate"):
|
| 39 |
+
with st.spinner("Generating text..."):
|
| 40 |
+
text = generate_text(prompt)
|
| 41 |
+
st.write(text)
|