Spaces:
Running
Running
jhj0517
commited on
Commit
·
a85ea1b
1
Parent(s):
19ab4f1
add gradio components
Browse files
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import argparse
|
|
|
|
| 3 |
|
| 4 |
from modules.whisper.whisper_Inference import WhisperInference
|
| 5 |
from modules.whisper.faster_whisper_inference import FasterWhisperInference
|
|
@@ -84,7 +85,7 @@ class App:
|
|
| 84 |
with gr.Column():
|
| 85 |
input_file = gr.Files(type="filepath", label="Upload File here")
|
| 86 |
tb_input_folder = gr.Textbox(label="Input Folder Path (Optional)",
|
| 87 |
-
info="Optional: Specify the folder path where the input files are located, if you prefer to use local files instead of uploading them."
|
| 88 |
" Leave this field empty if you do not wish to use a local path.",
|
| 89 |
visible=self.args.colab,
|
| 90 |
value="")
|
|
@@ -97,32 +98,83 @@ class App:
|
|
| 97 |
with gr.Row():
|
| 98 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 99 |
with gr.Row():
|
| 100 |
-
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
|
|
|
| 101 |
with gr.Accordion("Advanced Parameters", open=False):
|
| 102 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
| 103 |
-
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
|
|
|
|
| 104 |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
| 105 |
-
dd_compute_type = gr.Dropdown(label="Compute Type",
|
|
|
|
|
|
|
| 106 |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
|
| 107 |
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
|
| 108 |
-
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
|
|
|
|
| 109 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
| 110 |
-
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
with gr.Accordion("VAD", open=False):
|
| 113 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
| 114 |
-
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
| 115 |
-
|
|
|
|
|
|
|
| 116 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
| 117 |
-
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
|
|
|
| 118 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
| 119 |
with gr.Accordion("Diarization", open=False):
|
| 120 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
| 121 |
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
|
| 122 |
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
|
| 123 |
-
|
| 124 |
-
dd_diarization_device = gr.Dropdown(label="Device",
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
| 126 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
| 127 |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
| 128 |
with gr.Row():
|
|
@@ -133,30 +185,48 @@ class App:
|
|
| 133 |
btn_openfolder = gr.Button('📂', scale=1)
|
| 134 |
|
| 135 |
params = [input_file, tb_input_folder, dd_file_format, cb_timestamp]
|
| 136 |
-
whisper_params = WhisperParameters(
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
| 162 |
inputs=params + whisper_params.as_list(),
|
|
@@ -186,28 +256,77 @@ class App:
|
|
| 186 |
interactive=True)
|
| 187 |
with gr.Accordion("Advanced Parameters", open=False):
|
| 188 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
| 189 |
-
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
|
|
|
|
| 190 |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
| 191 |
-
dd_compute_type = gr.Dropdown(label="Compute Type",
|
|
|
|
|
|
|
| 192 |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
|
| 193 |
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
|
| 194 |
-
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
|
|
|
|
| 195 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
| 196 |
-
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
|
| 197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 198 |
with gr.Accordion("VAD", open=False):
|
| 199 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
| 200 |
-
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
| 201 |
-
|
|
|
|
|
|
|
| 202 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
| 203 |
-
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
|
|
|
| 204 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
| 205 |
with gr.Accordion("Diarization", open=False):
|
| 206 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
| 207 |
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
|
| 208 |
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
|
| 209 |
-
|
| 210 |
-
dd_diarization_device = gr.Dropdown(label="Device",
|
|
|
|
|
|
|
| 211 |
with gr.Accordion("Insanely Fast Whisper Parameters", open=False,
|
| 212 |
visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
| 213 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
|
@@ -220,30 +339,48 @@ class App:
|
|
| 220 |
btn_openfolder = gr.Button('📂', scale=1)
|
| 221 |
|
| 222 |
params = [tb_youtubelink, dd_file_format, cb_timestamp]
|
| 223 |
-
whisper_params = WhisperParameters(
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
| 249 |
inputs=params + whisper_params.as_list(),
|
|
@@ -266,20 +403,67 @@ class App:
|
|
| 266 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 267 |
with gr.Accordion("Advanced Parameters", open=False):
|
| 268 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
| 269 |
-
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
|
|
|
|
| 270 |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
| 271 |
-
dd_compute_type = gr.Dropdown(label="Compute Type",
|
|
|
|
|
|
|
| 272 |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
|
| 273 |
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
|
| 274 |
-
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
|
|
|
|
| 275 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
| 276 |
-
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 277 |
with gr.Accordion("VAD", open=False):
|
| 278 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
| 279 |
-
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
| 280 |
-
|
|
|
|
|
|
|
| 281 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
| 282 |
-
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
|
|
|
| 283 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
| 284 |
with gr.Accordion("Diarization", open=False):
|
| 285 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
|
@@ -301,30 +485,48 @@ class App:
|
|
| 301 |
btn_openfolder = gr.Button('📂', scale=1)
|
| 302 |
|
| 303 |
params = [mic_input, dd_file_format]
|
| 304 |
-
whisper_params = WhisperParameters(
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
| 330 |
inputs=params + whisper_params.as_list(),
|
|
@@ -389,7 +591,8 @@ class App:
|
|
| 389 |
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
|
| 390 |
|
| 391 |
btn_run.click(fn=self.nllb_inf.translate_file,
|
| 392 |
-
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang,
|
|
|
|
| 393 |
outputs=[tb_indicator, files_subtitles])
|
| 394 |
|
| 395 |
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
|
|
@@ -415,7 +618,8 @@ class App:
|
|
| 415 |
|
| 416 |
# Create the parser for command-line arguments
|
| 417 |
parser = argparse.ArgumentParser()
|
| 418 |
-
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
|
|
|
|
| 419 |
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value')
|
| 420 |
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
|
| 421 |
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
|
|
@@ -425,11 +629,17 @@ parser.add_argument('--password', type=str, default=None, help='Gradio authentic
|
|
| 425 |
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
|
| 426 |
parser.add_argument('--colab', type=bool, default=False, nargs='?', const=True, help='Is colab user or not')
|
| 427 |
parser.add_argument('--api_open', type=bool, default=False, nargs='?', const=True, help='enable api or not')
|
| 428 |
-
parser.add_argument('--whisper_model_dir', type=str, default=os.path.join("models", "Whisper"),
|
| 429 |
-
|
| 430 |
-
parser.add_argument('--
|
| 431 |
-
|
| 432 |
-
parser.add_argument('--
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 433 |
parser.add_argument('--output_dir', type=str, default=os.path.join("outputs"), help='Directory path of the outputs')
|
| 434 |
_args = parser.parse_args()
|
| 435 |
|
|
|
|
| 1 |
import os
|
| 2 |
import argparse
|
| 3 |
+
import gradio as gr
|
| 4 |
|
| 5 |
from modules.whisper.whisper_Inference import WhisperInference
|
| 6 |
from modules.whisper.faster_whisper_inference import FasterWhisperInference
|
|
|
|
| 85 |
with gr.Column():
|
| 86 |
input_file = gr.Files(type="filepath", label="Upload File here")
|
| 87 |
tb_input_folder = gr.Textbox(label="Input Folder Path (Optional)",
|
| 88 |
+
info="Optional: Specify the folder path where the input files are located, if you prefer to use local files instead of uploading them."
|
| 89 |
" Leave this field empty if you do not wish to use a local path.",
|
| 90 |
visible=self.args.colab,
|
| 91 |
value="")
|
|
|
|
| 98 |
with gr.Row():
|
| 99 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 100 |
with gr.Row():
|
| 101 |
+
cb_timestamp = gr.Checkbox(value=True, label="Add a timestamp to the end of the filename",
|
| 102 |
+
interactive=True)
|
| 103 |
with gr.Accordion("Advanced Parameters", open=False):
|
| 104 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
| 105 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
|
| 106 |
+
interactive=True)
|
| 107 |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
| 108 |
+
dd_compute_type = gr.Dropdown(label="Compute Type",
|
| 109 |
+
choices=self.whisper_inf.available_compute_types,
|
| 110 |
+
value=self.whisper_inf.current_compute_type, interactive=True)
|
| 111 |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
|
| 112 |
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
|
| 113 |
+
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
|
| 114 |
+
interactive=True)
|
| 115 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
| 116 |
+
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
|
| 117 |
+
interactive=True)
|
| 118 |
+
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4,
|
| 119 |
+
interactive=True)
|
| 120 |
+
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
| 121 |
+
with gr.Column():
|
| 122 |
+
nb_length_penalty = gr.Number(label="Length Penalty", value=1,
|
| 123 |
+
info="Exponential length penalty constant.")
|
| 124 |
+
nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=1,
|
| 125 |
+
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
|
| 126 |
+
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=0, precision=0,
|
| 127 |
+
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
|
| 128 |
+
tb_prefix = gr.Textbox(label="Prefix", value="",
|
| 129 |
+
info="Optional text to provide as a prefix for the first window.")
|
| 130 |
+
cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=True,
|
| 131 |
+
info="Suppress blank outputs at the beginning of the sampling.")
|
| 132 |
+
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value="-1",
|
| 133 |
+
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
|
| 134 |
+
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=1.0,
|
| 135 |
+
info="The initial timestamp cannot be later than this.")
|
| 136 |
+
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=False,
|
| 137 |
+
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
|
| 138 |
+
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value="\"'“¿([{-",
|
| 139 |
+
info="If word_timestamps is True, merge these punctuation symbols with the next word.")
|
| 140 |
+
tb_append_punctuations = gr.Textbox(label="Append Punctuations",
|
| 141 |
+
value="\"'.。,,!!??::”)]}、",
|
| 142 |
+
info="If word_timestamps is True, merge these punctuation symbols with the previous word.")
|
| 143 |
+
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=None, precision=0,
|
| 144 |
+
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
|
| 145 |
+
nb_chunk_length = gr.Number(label="Chunk Length", value=None,
|
| 146 |
+
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
|
| 147 |
+
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold",
|
| 148 |
+
value=None,
|
| 149 |
+
info="When word_timestamps is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
|
| 150 |
+
tb_hotwords = gr.Textbox(label="Hotwords", value="",
|
| 151 |
+
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
|
| 152 |
+
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold",
|
| 153 |
+
value=None,
|
| 154 |
+
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
|
| 155 |
+
nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=1,
|
| 156 |
+
precision=0,
|
| 157 |
+
info="Number of segments to consider for the language detection.")
|
| 158 |
with gr.Accordion("VAD", open=False):
|
| 159 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
| 160 |
+
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
| 161 |
+
value=0.5, info="Lower it to be more sensitive to small sounds.")
|
| 162 |
+
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0,
|
| 163 |
+
value=250)
|
| 164 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
| 165 |
+
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
| 166 |
+
value=2000)
|
| 167 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
| 168 |
with gr.Accordion("Diarization", open=False):
|
| 169 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
| 170 |
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
|
| 171 |
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
|
| 172 |
+
"To download the model, you must manually go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and agree to their requirement.")
|
| 173 |
+
dd_diarization_device = gr.Dropdown(label="Device",
|
| 174 |
+
choices=self.whisper_inf.diarizer.get_available_device(),
|
| 175 |
+
value=self.whisper_inf.diarizer.get_device())
|
| 176 |
+
with gr.Accordion("Insanely Fast Whisper Parameters", open=False,
|
| 177 |
+
visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
| 178 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
| 179 |
nb_batch_size = gr.Number(label="Batch Size", value=24, precision=0)
|
| 180 |
with gr.Row():
|
|
|
|
| 185 |
btn_openfolder = gr.Button('📂', scale=1)
|
| 186 |
|
| 187 |
params = [input_file, tb_input_folder, dd_file_format, cb_timestamp]
|
| 188 |
+
whisper_params = WhisperParameters(
|
| 189 |
+
model_size=dd_model,
|
| 190 |
+
lang=dd_lang,
|
| 191 |
+
is_translate=cb_translate,
|
| 192 |
+
beam_size=nb_beam_size,
|
| 193 |
+
log_prob_threshold=nb_log_prob_threshold,
|
| 194 |
+
no_speech_threshold=nb_no_speech_threshold,
|
| 195 |
+
compute_type=dd_compute_type,
|
| 196 |
+
best_of=nb_best_of,
|
| 197 |
+
patience=nb_patience,
|
| 198 |
+
condition_on_previous_text=cb_condition_on_previous_text,
|
| 199 |
+
initial_prompt=tb_initial_prompt,
|
| 200 |
+
temperature=sd_temperature,
|
| 201 |
+
compression_ratio_threshold=nb_compression_ratio_threshold,
|
| 202 |
+
vad_filter=cb_vad_filter,
|
| 203 |
+
threshold=sd_threshold,
|
| 204 |
+
min_speech_duration_ms=nb_min_speech_duration_ms,
|
| 205 |
+
max_speech_duration_s=nb_max_speech_duration_s,
|
| 206 |
+
min_silence_duration_ms=nb_min_silence_duration_ms,
|
| 207 |
+
speech_pad_ms=nb_speech_pad_ms,
|
| 208 |
+
chunk_length_s=nb_chunk_length_s,
|
| 209 |
+
batch_size=nb_batch_size,
|
| 210 |
+
is_diarize=cb_diarize,
|
| 211 |
+
hf_token=tb_hf_token,
|
| 212 |
+
diarization_device=dd_diarization_device,
|
| 213 |
+
length_penalty=nb_length_penalty,
|
| 214 |
+
repetition_penalty=nb_repetition_penalty,
|
| 215 |
+
no_repeat_ngram_size=nb_no_repeat_ngram_size,
|
| 216 |
+
prefix=tb_prefix,
|
| 217 |
+
suppress_blank=cb_suppress_blank,
|
| 218 |
+
suppress_tokens=tb_suppress_tokens,
|
| 219 |
+
max_initial_timestamp=nb_max_initial_timestamp,
|
| 220 |
+
word_timestamps=cb_word_timestamps,
|
| 221 |
+
prepend_punctuations=tb_prepend_punctuations,
|
| 222 |
+
append_punctuations=tb_append_punctuations,
|
| 223 |
+
max_new_tokens=nb_max_new_tokens,
|
| 224 |
+
chunk_length=nb_chunk_length,
|
| 225 |
+
hallucination_silence_threshold=nb_hallucination_silence_threshold,
|
| 226 |
+
hotwords=tb_hotwords,
|
| 227 |
+
language_detection_threshold=nb_language_detection_threshold,
|
| 228 |
+
language_detection_segments=nb_language_detection_segments
|
| 229 |
+
)
|
| 230 |
|
| 231 |
btn_run.click(fn=self.whisper_inf.transcribe_file,
|
| 232 |
inputs=params + whisper_params.as_list(),
|
|
|
|
| 256 |
interactive=True)
|
| 257 |
with gr.Accordion("Advanced Parameters", open=False):
|
| 258 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
| 259 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
|
| 260 |
+
interactive=True)
|
| 261 |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
| 262 |
+
dd_compute_type = gr.Dropdown(label="Compute Type",
|
| 263 |
+
choices=self.whisper_inf.available_compute_types,
|
| 264 |
+
value=self.whisper_inf.current_compute_type, interactive=True)
|
| 265 |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
|
| 266 |
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
|
| 267 |
+
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
|
| 268 |
+
interactive=True)
|
| 269 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
| 270 |
+
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
|
| 271 |
+
interactive=True)
|
| 272 |
+
nb_compression_ratio_threshold = gr.Number(label="Compression Ratio Threshold", value=2.4,
|
| 273 |
+
interactive=True)
|
| 274 |
+
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
| 275 |
+
with gr.Column():
|
| 276 |
+
nb_length_penalty = gr.Number(label="Length Penalty", value=1,
|
| 277 |
+
info="Exponential length penalty constant.")
|
| 278 |
+
nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=1,
|
| 279 |
+
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
|
| 280 |
+
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=0, precision=0,
|
| 281 |
+
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
|
| 282 |
+
tb_prefix = gr.Textbox(label="Prefix", value="",
|
| 283 |
+
info="Optional text to provide as a prefix for the first window.")
|
| 284 |
+
cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=True,
|
| 285 |
+
info="Suppress blank outputs at the beginning of the sampling.")
|
| 286 |
+
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value="-1",
|
| 287 |
+
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
|
| 288 |
+
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=1.0,
|
| 289 |
+
info="The initial timestamp cannot be later than this.")
|
| 290 |
+
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=False,
|
| 291 |
+
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
|
| 292 |
+
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value="\"'“¿([{-",
|
| 293 |
+
info="If word_timestamps is True, merge these punctuation symbols with the next word.")
|
| 294 |
+
tb_append_punctuations = gr.Textbox(label="Append Punctuations",
|
| 295 |
+
value="\"'.。,,!!??::”)]}、",
|
| 296 |
+
info="If word_timestamps is True, merge these punctuation symbols with the previous word.")
|
| 297 |
+
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=None, precision=0,
|
| 298 |
+
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
|
| 299 |
+
nb_chunk_length = gr.Number(label="Chunk Length", value=None,
|
| 300 |
+
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
|
| 301 |
+
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold",
|
| 302 |
+
value=None,
|
| 303 |
+
info="When word_timestamps is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
|
| 304 |
+
tb_hotwords = gr.Textbox(label="Hotwords", value="",
|
| 305 |
+
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
|
| 306 |
+
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold",
|
| 307 |
+
value=None,
|
| 308 |
+
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
|
| 309 |
+
nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=1,
|
| 310 |
+
precision=0,
|
| 311 |
+
info="Number of segments to consider for the language detection.")
|
| 312 |
with gr.Accordion("VAD", open=False):
|
| 313 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
| 314 |
+
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
| 315 |
+
value=0.5, info="Lower it to be more sensitive to small sounds.")
|
| 316 |
+
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0,
|
| 317 |
+
value=250)
|
| 318 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
| 319 |
+
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
| 320 |
+
value=2000)
|
| 321 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
| 322 |
with gr.Accordion("Diarization", open=False):
|
| 323 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
| 324 |
tb_hf_token = gr.Text(label="HuggingFace Token", value="",
|
| 325 |
info="This is only needed the first time you download the model. If you already have models, you don't need to enter. "
|
| 326 |
+
"To download the model, you must manually go to \"https://huggingface.co/pyannote/speaker-diarization-3.1\" and agree to their requirement.")
|
| 327 |
+
dd_diarization_device = gr.Dropdown(label="Device",
|
| 328 |
+
choices=self.whisper_inf.diarizer.get_available_device(),
|
| 329 |
+
value=self.whisper_inf.diarizer.get_device())
|
| 330 |
with gr.Accordion("Insanely Fast Whisper Parameters", open=False,
|
| 331 |
visible=isinstance(self.whisper_inf, InsanelyFastWhisperInference)):
|
| 332 |
nb_chunk_length_s = gr.Number(label="Chunk Lengths (sec)", value=30, precision=0)
|
|
|
|
| 339 |
btn_openfolder = gr.Button('📂', scale=1)
|
| 340 |
|
| 341 |
params = [tb_youtubelink, dd_file_format, cb_timestamp]
|
| 342 |
+
whisper_params = WhisperParameters(
|
| 343 |
+
model_size=dd_model,
|
| 344 |
+
lang=dd_lang,
|
| 345 |
+
is_translate=cb_translate,
|
| 346 |
+
beam_size=nb_beam_size,
|
| 347 |
+
log_prob_threshold=nb_log_prob_threshold,
|
| 348 |
+
no_speech_threshold=nb_no_speech_threshold,
|
| 349 |
+
compute_type=dd_compute_type,
|
| 350 |
+
best_of=nb_best_of,
|
| 351 |
+
patience=nb_patience,
|
| 352 |
+
condition_on_previous_text=cb_condition_on_previous_text,
|
| 353 |
+
initial_prompt=tb_initial_prompt,
|
| 354 |
+
temperature=sd_temperature,
|
| 355 |
+
compression_ratio_threshold=nb_compression_ratio_threshold,
|
| 356 |
+
vad_filter=cb_vad_filter,
|
| 357 |
+
threshold=sd_threshold,
|
| 358 |
+
min_speech_duration_ms=nb_min_speech_duration_ms,
|
| 359 |
+
max_speech_duration_s=nb_max_speech_duration_s,
|
| 360 |
+
min_silence_duration_ms=nb_min_silence_duration_ms,
|
| 361 |
+
speech_pad_ms=nb_speech_pad_ms,
|
| 362 |
+
chunk_length_s=nb_chunk_length_s,
|
| 363 |
+
batch_size=nb_batch_size,
|
| 364 |
+
is_diarize=cb_diarize,
|
| 365 |
+
hf_token=tb_hf_token,
|
| 366 |
+
diarization_device=dd_diarization_device,
|
| 367 |
+
length_penalty=nb_length_penalty,
|
| 368 |
+
repetition_penalty=nb_repetition_penalty,
|
| 369 |
+
no_repeat_ngram_size=nb_no_repeat_ngram_size,
|
| 370 |
+
prefix=tb_prefix,
|
| 371 |
+
suppress_blank=cb_suppress_blank,
|
| 372 |
+
suppress_tokens=tb_suppress_tokens,
|
| 373 |
+
max_initial_timestamp=nb_max_initial_timestamp,
|
| 374 |
+
word_timestamps=cb_word_timestamps,
|
| 375 |
+
prepend_punctuations=tb_prepend_punctuations,
|
| 376 |
+
append_punctuations=tb_append_punctuations,
|
| 377 |
+
max_new_tokens=nb_max_new_tokens,
|
| 378 |
+
chunk_length=nb_chunk_length,
|
| 379 |
+
hallucination_silence_threshold=nb_hallucination_silence_threshold,
|
| 380 |
+
hotwords=tb_hotwords,
|
| 381 |
+
language_detection_threshold=nb_language_detection_threshold,
|
| 382 |
+
language_detection_segments=nb_language_detection_segments
|
| 383 |
+
)
|
| 384 |
|
| 385 |
btn_run.click(fn=self.whisper_inf.transcribe_youtube,
|
| 386 |
inputs=params + whisper_params.as_list(),
|
|
|
|
| 403 |
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
|
| 404 |
with gr.Accordion("Advanced Parameters", open=False):
|
| 405 |
nb_beam_size = gr.Number(label="Beam Size", value=1, precision=0, interactive=True)
|
| 406 |
+
nb_log_prob_threshold = gr.Number(label="Log Probability Threshold", value=-1.0,
|
| 407 |
+
interactive=True)
|
| 408 |
nb_no_speech_threshold = gr.Number(label="No Speech Threshold", value=0.6, interactive=True)
|
| 409 |
+
dd_compute_type = gr.Dropdown(label="Compute Type",
|
| 410 |
+
choices=self.whisper_inf.available_compute_types,
|
| 411 |
+
value=self.whisper_inf.current_compute_type, interactive=True)
|
| 412 |
nb_best_of = gr.Number(label="Best Of", value=5, interactive=True)
|
| 413 |
nb_patience = gr.Number(label="Patience", value=1, interactive=True)
|
| 414 |
+
cb_condition_on_previous_text = gr.Checkbox(label="Condition On Previous Text", value=True,
|
| 415 |
+
interactive=True)
|
| 416 |
tb_initial_prompt = gr.Textbox(label="Initial Prompt", value=None, interactive=True)
|
| 417 |
+
sd_temperature = gr.Slider(label="Temperature", value=0, step=0.01, maximum=1.0,
|
| 418 |
+
interactive=True)
|
| 419 |
+
|
| 420 |
+
with gr.Group(visible=isinstance(self.whisper_inf, FasterWhisperInference)):
|
| 421 |
+
with gr.Column():
|
| 422 |
+
nb_length_penalty = gr.Number(label="Length Penalty", value=1,
|
| 423 |
+
info="Exponential length penalty constant.")
|
| 424 |
+
nb_repetition_penalty = gr.Number(label="Repetition Penalty", value=1,
|
| 425 |
+
info="Penalty applied to the score of previously generated tokens (set > 1 to penalize).")
|
| 426 |
+
nb_no_repeat_ngram_size = gr.Number(label="No Repeat N-gram Size", value=0, precision=0,
|
| 427 |
+
info="Prevent repetitions of n-grams with this size (set 0 to disable).")
|
| 428 |
+
tb_prefix = gr.Textbox(label="Prefix", value="",
|
| 429 |
+
info="Optional text to provide as a prefix for the first window.")
|
| 430 |
+
cb_suppress_blank = gr.Checkbox(label="Suppress Blank", value=True,
|
| 431 |
+
info="Suppress blank outputs at the beginning of the sampling.")
|
| 432 |
+
tb_suppress_tokens = gr.Textbox(label="Suppress Tokens", value="-1",
|
| 433 |
+
info="List of token IDs to suppress. -1 will suppress a default set of symbols as defined in the model config.json file.")
|
| 434 |
+
nb_max_initial_timestamp = gr.Number(label="Max Initial Timestamp", value=1.0,
|
| 435 |
+
info="The initial timestamp cannot be later than this.")
|
| 436 |
+
cb_word_timestamps = gr.Checkbox(label="Word Timestamps", value=False,
|
| 437 |
+
info="Extract word-level timestamps using the cross-attention pattern and dynamic time warping, and include the timestamps for each word in each segment.")
|
| 438 |
+
tb_prepend_punctuations = gr.Textbox(label="Prepend Punctuations", value="\"'“¿([{-",
|
| 439 |
+
info="If word_timestamps is True, merge these punctuation symbols with the next word.")
|
| 440 |
+
tb_append_punctuations = gr.Textbox(label="Append Punctuations",
|
| 441 |
+
value="\"'.。,,!!??::”)]}、",
|
| 442 |
+
info="If word_timestamps is True, merge these punctuation symbols with the previous word.")
|
| 443 |
+
nb_max_new_tokens = gr.Number(label="Max New Tokens", value=None, precision=0,
|
| 444 |
+
info="Maximum number of new tokens to generate per-chunk. If not set, the maximum will be set by the default max_length.")
|
| 445 |
+
nb_chunk_length = gr.Number(label="Chunk Length", value=None,
|
| 446 |
+
info="The length of audio segments. If it is not None, it will overwrite the default chunk_length of the FeatureExtractor.")
|
| 447 |
+
nb_hallucination_silence_threshold = gr.Number(label="Hallucination Silence Threshold",
|
| 448 |
+
value=None,
|
| 449 |
+
info="When word_timestamps is True, skip silent periods longer than this threshold (in seconds) when a possible hallucination is detected.")
|
| 450 |
+
tb_hotwords = gr.Textbox(label="Hotwords", value="",
|
| 451 |
+
info="Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.")
|
| 452 |
+
nb_language_detection_threshold = gr.Number(label="Language Detection Threshold",
|
| 453 |
+
value=None,
|
| 454 |
+
info="If the maximum probability of the language tokens is higher than this value, the language is detected.")
|
| 455 |
+
nb_language_detection_segments = gr.Number(label="Language Detection Segments", value=1,
|
| 456 |
+
precision=0,
|
| 457 |
+
info="Number of segments to consider for the language detection.")
|
| 458 |
with gr.Accordion("VAD", open=False):
|
| 459 |
cb_vad_filter = gr.Checkbox(label="Enable Silero VAD Filter", value=False, interactive=True)
|
| 460 |
+
sd_threshold = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Speech Threshold",
|
| 461 |
+
value=0.5, info="Lower it to be more sensitive to small sounds.")
|
| 462 |
+
nb_min_speech_duration_ms = gr.Number(label="Minimum Speech Duration (ms)", precision=0,
|
| 463 |
+
value=250)
|
| 464 |
nb_max_speech_duration_s = gr.Number(label="Maximum Speech Duration (s)", value=9999)
|
| 465 |
+
nb_min_silence_duration_ms = gr.Number(label="Minimum Silence Duration (ms)", precision=0,
|
| 466 |
+
value=2000)
|
| 467 |
nb_speech_pad_ms = gr.Number(label="Speech Padding (ms)", precision=0, value=400)
|
| 468 |
with gr.Accordion("Diarization", open=False):
|
| 469 |
cb_diarize = gr.Checkbox(label="Enable Diarization")
|
|
|
|
| 485 |
btn_openfolder = gr.Button('📂', scale=1)
|
| 486 |
|
| 487 |
params = [mic_input, dd_file_format]
|
| 488 |
+
whisper_params = WhisperParameters(
|
| 489 |
+
model_size=dd_model,
|
| 490 |
+
lang=dd_lang,
|
| 491 |
+
is_translate=cb_translate,
|
| 492 |
+
beam_size=nb_beam_size,
|
| 493 |
+
log_prob_threshold=nb_log_prob_threshold,
|
| 494 |
+
no_speech_threshold=nb_no_speech_threshold,
|
| 495 |
+
compute_type=dd_compute_type,
|
| 496 |
+
best_of=nb_best_of,
|
| 497 |
+
patience=nb_patience,
|
| 498 |
+
condition_on_previous_text=cb_condition_on_previous_text,
|
| 499 |
+
initial_prompt=tb_initial_prompt,
|
| 500 |
+
temperature=sd_temperature,
|
| 501 |
+
compression_ratio_threshold=nb_compression_ratio_threshold,
|
| 502 |
+
vad_filter=cb_vad_filter,
|
| 503 |
+
threshold=sd_threshold,
|
| 504 |
+
min_speech_duration_ms=nb_min_speech_duration_ms,
|
| 505 |
+
max_speech_duration_s=nb_max_speech_duration_s,
|
| 506 |
+
min_silence_duration_ms=nb_min_silence_duration_ms,
|
| 507 |
+
speech_pad_ms=nb_speech_pad_ms,
|
| 508 |
+
chunk_length_s=nb_chunk_length_s,
|
| 509 |
+
batch_size=nb_batch_size,
|
| 510 |
+
is_diarize=cb_diarize,
|
| 511 |
+
hf_token=tb_hf_token,
|
| 512 |
+
diarization_device=dd_diarization_device,
|
| 513 |
+
length_penalty=nb_length_penalty,
|
| 514 |
+
repetition_penalty=nb_repetition_penalty,
|
| 515 |
+
no_repeat_ngram_size=nb_no_repeat_ngram_size,
|
| 516 |
+
prefix=tb_prefix,
|
| 517 |
+
suppress_blank=cb_suppress_blank,
|
| 518 |
+
suppress_tokens=tb_suppress_tokens,
|
| 519 |
+
max_initial_timestamp=nb_max_initial_timestamp,
|
| 520 |
+
word_timestamps=cb_word_timestamps,
|
| 521 |
+
prepend_punctuations=tb_prepend_punctuations,
|
| 522 |
+
append_punctuations=tb_append_punctuations,
|
| 523 |
+
max_new_tokens=nb_max_new_tokens,
|
| 524 |
+
chunk_length=nb_chunk_length,
|
| 525 |
+
hallucination_silence_threshold=nb_hallucination_silence_threshold,
|
| 526 |
+
hotwords=tb_hotwords,
|
| 527 |
+
language_detection_threshold=nb_language_detection_threshold,
|
| 528 |
+
language_detection_segments=nb_language_detection_segments
|
| 529 |
+
)
|
| 530 |
|
| 531 |
btn_run.click(fn=self.whisper_inf.transcribe_mic,
|
| 532 |
inputs=params + whisper_params.as_list(),
|
|
|
|
| 591 |
md_vram_table = gr.HTML(NLLB_VRAM_TABLE, elem_id="md_nllb_vram_table")
|
| 592 |
|
| 593 |
btn_run.click(fn=self.nllb_inf.translate_file,
|
| 594 |
+
inputs=[file_subs, dd_nllb_model, dd_nllb_sourcelang, dd_nllb_targetlang,
|
| 595 |
+
nb_max_length, cb_timestamp],
|
| 596 |
outputs=[tb_indicator, files_subtitles])
|
| 597 |
|
| 598 |
btn_openfolder.click(fn=lambda: self.open_folder(os.path.join("outputs", "translations")),
|
|
|
|
| 618 |
|
| 619 |
# Create the parser for command-line arguments
|
| 620 |
parser = argparse.ArgumentParser()
|
| 621 |
+
parser.add_argument('--whisper_type', type=str, default="faster-whisper",
|
| 622 |
+
help='A type of the whisper implementation between: ["whisper", "faster-whisper", "insanely-fast-whisper"]')
|
| 623 |
parser.add_argument('--share', type=bool, default=False, nargs='?', const=True, help='Gradio share value')
|
| 624 |
parser.add_argument('--server_name', type=str, default=None, help='Gradio server host')
|
| 625 |
parser.add_argument('--server_port', type=int, default=None, help='Gradio server port')
|
|
|
|
| 629 |
parser.add_argument('--theme', type=str, default=None, help='Gradio Blocks theme')
|
| 630 |
parser.add_argument('--colab', type=bool, default=False, nargs='?', const=True, help='Is colab user or not')
|
| 631 |
parser.add_argument('--api_open', type=bool, default=False, nargs='?', const=True, help='enable api or not')
|
| 632 |
+
parser.add_argument('--whisper_model_dir', type=str, default=os.path.join("models", "Whisper"),
|
| 633 |
+
help='Directory path of the whisper model')
|
| 634 |
+
parser.add_argument('--faster_whisper_model_dir', type=str, default=os.path.join("models", "Whisper", "faster-whisper"),
|
| 635 |
+
help='Directory path of the faster-whisper model')
|
| 636 |
+
parser.add_argument('--insanely_fast_whisper_model_dir', type=str,
|
| 637 |
+
default=os.path.join("models", "Whisper", "insanely-fast-whisper"),
|
| 638 |
+
help='Directory path of the insanely-fast-whisper model')
|
| 639 |
+
parser.add_argument('--diarization_model_dir', type=str, default=os.path.join("models", "Diarization"),
|
| 640 |
+
help='Directory path of the diarization model')
|
| 641 |
+
parser.add_argument('--nllb_model_dir', type=str, default=os.path.join("models", "NLLB"),
|
| 642 |
+
help='Directory path of the Facebook NLLB model')
|
| 643 |
parser.add_argument('--output_dir', type=str, default=os.path.join("outputs"), help='Directory path of the outputs')
|
| 644 |
_args = parser.parse_args()
|
| 645 |
|