Spaces:
Sleeping
Sleeping
display the output proper
Browse files
app.py
CHANGED
|
@@ -20,14 +20,22 @@ model = model.eval()
|
|
| 20 |
@spaces.GPU
|
| 21 |
def process_image(image, model_size, task_type):
|
| 22 |
"""
|
| 23 |
-
Process image with DeepSeek-OCR
|
| 24 |
|
| 25 |
Args:
|
| 26 |
image: PIL Image or file path
|
| 27 |
model_size: Model size configuration
|
| 28 |
task_type: OCR task type
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
"""
|
| 30 |
-
|
|
|
|
|
|
|
| 31 |
model_gpu = model.cuda().to(torch.bfloat16)
|
| 32 |
|
| 33 |
# Create temporary directory for output
|
|
@@ -60,7 +68,7 @@ def process_image(image, model_size, task_type):
|
|
| 60 |
config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])
|
| 61 |
|
| 62 |
# Run inference
|
| 63 |
-
|
| 64 |
tokenizer,
|
| 65 |
prompt=prompt,
|
| 66 |
image_file=temp_image_path,
|
|
@@ -68,17 +76,34 @@ def process_image(image, model_size, task_type):
|
|
| 68 |
base_size=config["base_size"],
|
| 69 |
image_size=config["image_size"],
|
| 70 |
crop_mode=config["crop_mode"],
|
| 71 |
-
save_results=True,
|
| 72 |
test_compress=True,
|
| 73 |
-
eval_mode=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
)
|
| 75 |
|
| 76 |
-
|
| 77 |
-
return
|
| 78 |
|
| 79 |
|
| 80 |
# Create Gradio interface
|
| 81 |
-
with gr.Blocks(title="DeepSeek-OCR") as demo:
|
| 82 |
gr.Markdown(
|
| 83 |
"""
|
| 84 |
# DeepSeek-OCR Document Recognition
|
|
@@ -96,7 +121,7 @@ with gr.Blocks(title="DeepSeek-OCR") as demo:
|
|
| 96 |
)
|
| 97 |
|
| 98 |
with gr.Row():
|
| 99 |
-
with gr.Column():
|
| 100 |
image_input = gr.Image(
|
| 101 |
type="pil", label="Upload Image", sources=["upload", "clipboard"]
|
| 102 |
)
|
|
@@ -113,12 +138,29 @@ with gr.Blocks(title="DeepSeek-OCR") as demo:
|
|
| 113 |
label="Task Type",
|
| 114 |
)
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
submit_btn = gr.Button("Process Image", variant="primary")
|
| 117 |
|
| 118 |
-
with gr.Column():
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
# Examples
|
| 124 |
gr.Examples(
|
|
@@ -127,18 +169,19 @@ with gr.Blocks(title="DeepSeek-OCR") as demo:
|
|
| 127 |
["examples/receipt.jpg", "Base", "Free OCR"],
|
| 128 |
],
|
| 129 |
inputs=[image_input, model_size, task_type],
|
| 130 |
-
outputs=output_text,
|
| 131 |
fn=process_image,
|
| 132 |
cache_examples=False,
|
| 133 |
)
|
| 134 |
|
| 135 |
submit_btn.click(
|
| 136 |
fn=process_image,
|
| 137 |
-
inputs=[image_input, model_size, task_type],
|
| 138 |
-
outputs=output_text,
|
| 139 |
)
|
| 140 |
|
| 141 |
# Launch the app
|
| 142 |
if __name__ == "__main__":
|
| 143 |
demo.queue(max_size=20)
|
| 144 |
demo.launch()
|
|
|
|
|
|
| 20 |
@spaces.GPU
|
| 21 |
def process_image(image, model_size, task_type):
|
| 22 |
"""
|
| 23 |
+
Process image with DeepSeek-OCR and return multiple output formats.
|
| 24 |
|
| 25 |
Args:
|
| 26 |
image: PIL Image or file path
|
| 27 |
model_size: Model size configuration
|
| 28 |
task_type: OCR task type
|
| 29 |
+
|
| 30 |
+
Returns:
|
| 31 |
+
A tuple containing:
|
| 32 |
+
- Path to the image with bounding boxes.
|
| 33 |
+
- The content of the markdown result file.
|
| 34 |
+
- The plain text OCR result.
|
| 35 |
"""
|
| 36 |
+
if image is None:
|
| 37 |
+
return None, "Please upload an image first.", "Please upload an image first."
|
| 38 |
+
|
| 39 |
model_gpu = model.cuda().to(torch.bfloat16)
|
| 40 |
|
| 41 |
# Create temporary directory for output
|
|
|
|
| 68 |
config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])
|
| 69 |
|
| 70 |
# Run inference
|
| 71 |
+
plain_text_result = model_gpu.infer(
|
| 72 |
tokenizer,
|
| 73 |
prompt=prompt,
|
| 74 |
image_file=temp_image_path,
|
|
|
|
| 76 |
base_size=config["base_size"],
|
| 77 |
image_size=config["image_size"],
|
| 78 |
crop_mode=config["crop_mode"],
|
| 79 |
+
save_results=True, # Ensure results are saved to disk
|
| 80 |
test_compress=True,
|
| 81 |
+
# eval_mode=True,
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
# Define paths for the generated files
|
| 85 |
+
image_result_path = os.path.join(output_path, "result_with_boxes.jpg")
|
| 86 |
+
markdown_result_path = os.path.join(output_path, "result.mmd")
|
| 87 |
+
|
| 88 |
+
# Read the markdown file content if it exists
|
| 89 |
+
markdown_content = ""
|
| 90 |
+
if os.path.exists(markdown_result_path):
|
| 91 |
+
with open(markdown_result_path, "r", encoding="utf-8") as f:
|
| 92 |
+
markdown_content = f.read()
|
| 93 |
+
else:
|
| 94 |
+
markdown_content = "Markdown result was not generated. This is expected for 'Free OCR' task."
|
| 95 |
+
|
| 96 |
+
# Check if the annotated image exists
|
| 97 |
+
final_image_path = (
|
| 98 |
+
image_result_path if os.path.exists(image_result_path) else None
|
| 99 |
)
|
| 100 |
|
| 101 |
+
# Return all three results. Gradio will handle the temporary file path for the image.
|
| 102 |
+
return final_image_path, markdown_content, plain_text_result
|
| 103 |
|
| 104 |
|
| 105 |
# Create Gradio interface
|
| 106 |
+
with gr.Blocks(title="DeepSeek-OCR", theme=gr.themes.Soft()) as demo:
|
| 107 |
gr.Markdown(
|
| 108 |
"""
|
| 109 |
# DeepSeek-OCR Document Recognition
|
|
|
|
| 121 |
)
|
| 122 |
|
| 123 |
with gr.Row():
|
| 124 |
+
with gr.Column(scale=1):
|
| 125 |
image_input = gr.Image(
|
| 126 |
type="pil", label="Upload Image", sources=["upload", "clipboard"]
|
| 127 |
)
|
|
|
|
| 138 |
label="Task Type",
|
| 139 |
)
|
| 140 |
|
| 141 |
+
eval_mode_checkbox = gr.Checkbox(
|
| 142 |
+
value=False,
|
| 143 |
+
label="Enable Evaluation Mode",
|
| 144 |
+
info="Returns only plain text, but might be faster. Uncheck to get annotated image and markdown.",
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
submit_btn = gr.Button("Process Image", variant="primary")
|
| 148 |
|
| 149 |
+
with gr.Column(scale=2):
|
| 150 |
+
with gr.Tabs():
|
| 151 |
+
with gr.TabItem("Annotated Image"):
|
| 152 |
+
output_image = gr.Image(
|
| 153 |
+
label="Result with Bounding Boxes", interactive=False
|
| 154 |
+
)
|
| 155 |
+
with gr.TabItem("Markdown Output"):
|
| 156 |
+
output_markdown = gr.Markdown(label="Markdown Formatted Result")
|
| 157 |
+
with gr.TabItem("Plain Text"):
|
| 158 |
+
output_text = gr.Textbox(
|
| 159 |
+
label="OCR Result (eval_mode == True)",
|
| 160 |
+
lines=20,
|
| 161 |
+
show_copy_button=True,
|
| 162 |
+
interactive=False,
|
| 163 |
+
)
|
| 164 |
|
| 165 |
# Examples
|
| 166 |
gr.Examples(
|
|
|
|
| 169 |
["examples/receipt.jpg", "Base", "Free OCR"],
|
| 170 |
],
|
| 171 |
inputs=[image_input, model_size, task_type],
|
| 172 |
+
outputs=[output_image, output_markdown, output_text, eval_mode_checkbox],
|
| 173 |
fn=process_image,
|
| 174 |
cache_examples=False,
|
| 175 |
)
|
| 176 |
|
| 177 |
submit_btn.click(
|
| 178 |
fn=process_image,
|
| 179 |
+
inputs=[image_input, model_size, task_type, eval_mode_checkbox],
|
| 180 |
+
outputs=[output_image, output_markdown, output_text],
|
| 181 |
)
|
| 182 |
|
| 183 |
# Launch the app
|
| 184 |
if __name__ == "__main__":
|
| 185 |
demo.queue(max_size=20)
|
| 186 |
demo.launch()
|
| 187 |
+
|